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Abstract

Constraint Programming (CP) is a powerful technique for solving large-scale com-

binatorial (optimisation) problems. Constraint solving a given problem proceeds in two

phases: modelling and solving. Effective modelling has an huge impact on the perform-

ance of the solving process. This thesis presents a framework in which the users are not

required to make modelling decisions, concrete CP models are automatically generated

from a high level problem specification. In this framework, modelling decisions are

encoded as generic rewrite rules applicable to many different problems.

First, modelling decisions are divided into two broad categories. This categorisation

guides the automation of each kind of modelling decision and also leads us to the

architecture of the automated modelling tool.

Second, a domain-specific declarative rewrite rule language is introduced. Thanks

to the rule language, automated modelling transformations and the core system are

decoupled. The rule language greatly increases the extensibility and maintainability of

the rewrite rules database. The database of rules represents the modelling knowledge

acquired after analysis of expert models. This database must be easily extensible to best

benefit from the active research on constraint modelling.

Third, the automated modelling system Conjure is implemented as a realisation

of these ideas; having an implementation enables empirical testing of the quality of

generated models. The ease with which rewrite rules can be encoded to produce good

models is shown. Furthermore, thanks to the generality of the system, one needs to add

a very small number of rules to encode many transformations.

Finally, the work is evaluated by comparing the generated models to expert models

found in the literature for a wide variety of benchmark problems. This evaluation

confirms the hypothesis that expert models can be automatically generated starting from

high level problem specifications. An method of automatically identifying good models

is also presented.

In summary, this thesis presents a framework to enable the automatic generation

of efficient constraint models from problem specifications. It provides a pleasant

environment for both problem owners and modelling experts. Problem owners are

presented with a fully automated constraint solution process, once they have a precise

description of their problem. Modelling experts can now encode their precious modelling

expertise as rewrite rules instead of merely modelling a single problem; resulting in

reusable constraint modelling knowledge.
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Chapter 1

Introduction

Constraint Programming (CP) can be a very powerful way for solving difficult combinatorial

problems; however, using CP effectively requires a lot of expertise and hard work, even for

experts. Solving a problem using CP proceeds in two steps: modelling and solving. Problems

are often communicated in informal ways. On the other hand, CP solvers are computer

programs and they need formal descriptions of problems: CP models. Modelling is the

process of producing a concrete CP model for a given problem. It requires several modelling

decisions to be made, since typically there are many ways to model the same problem.

A CP model contains decision variables with associated domains and constraints which

limit assignments to the decision variables. Solving a CP model is the process of finding a

simultaneous assignment to all decision variables without violating any constraints.

The importance of modelling in CP is acknowledged by Barbara Smith in Chapter 11

of [Smi06a]: “... there is abundant evidence that how the problem to be solved is modelled as a

Constraint Satisfaction Problem (CSP) can have a dramatic effect on how easy it is to find a solution,

or indeed whether it can realistically be solved at all.” Different models for the same problem,

despite all being correct, can take drastically different amounts of time to solve using the

same solver. Unfortunately, it is very hard to compare models for effectiveness without

actually trying each alternative. Hence, even expert modellers often need to experiment with

different ways of modelling a problem until they reach a good model. Moreover, typically a

1



1. Introduction

modelling technique which works very well for a certain problem may not work so well for

another problem.

The difficulty of formulating an effective model is also referred to as the modelling

bottleneck and is considered to be one of the key challenges facing the constraints field

[Pug04], and one of the principal obstacles preventing widespread adoption of constraint

solving. In order to address this challenge, automated modelling has become a very active

area of research in CP. Several approaches have been taken to automate aspects of CP

modelling including machine learning [Bes+06]; case-based reasoning [Lit+03]; theorem

proving [Cha+06]; automated transformation of medium-level solver-independent constraint

models [Ren10; Net+07; Van99; Mil+99]; and refinement of abstract constraint specifications

[Fri+05b; Akg+11b] in languages such as ESRA [Fle+03], Essence [Fri+08], F [Hni03] or

Zinc [Mar+08a; Kon+10].

The approach described in this thesis is to start from a highly abstract problem specification

and produce concrete CP models automatically. The problem specification language Essence

enables specifying problems concisely; the language is designed to capture problem structure

at a level of abstraction that is above where most CP modelling decisions are made. For

instance, having an array of decision variables and posting an allDiff constraint on this

array is a common idiom in CP modelling. Many uses of this idiom can be replaced with a

set decision variable. Using a set decision variable instead, the user gets access to a large

collection of predefined set operators — such as union, intersection, subset, set equality

— and more importantly they do not commit to using a one dimensional array. Conjure,

the automated constraint modelling tool developed as a part of this thesis, can refine this

decision variable and all expressions involving it in multiple ways, possibly also including

the one-dimensional array representation as an alternative.

In addition to sets, Essence provides decision variables with other abstract domains:

tuples, enumerations, functions, relations, multi-sets, partitions, and allows arbitrary nesting

of these. It also provides a rich collection of operators for variables with abstract domains

enabling concise specification of problem structure. Conjure applies modelling transform-

2



1.1. Background

ations to the input problem specification to produce CP models. In order to express the

transformation rules, Conjure uses a domain-specific language. Using a domain-specific

language enables us to write rules more easily, extend Conjure’s modelling capabilities

without recompiling it, and make rule authoring more accessible to CP researchers so they

can encode new modelling tricks and improve Conjure.

Conjure contains at least one, but typically several, representation options for each

abstract domain, and alternative translations for operators on abstract variables. Hence,

it can typically generate several alternative formulations of a single problem specification.

In this regard, Conjure is similar to conventional compilers, which also have to choose

between alternative transformations during compilation. Each decision in Conjure is

far more important though, since solution performance of different models for the same

problem can be drastically different.

1.1 Background

Conjure was introduced in prototype form by Frisch et al. [Fri+05b]. It was able to refine a

fragment of Essence limited to nested set and multi-set decision variables into models in

Essence
′, a solver-independent modelling language. Subsequent work [Mar+06; Mar+08b],

considered issues involved in automatically channelling among different representations

of abstract variables. These were research prototypes which should be considered as

experimental. They were only able to refine a fraction of the input language Essence. The

Conjure system presented in this thesis is implemented from scratch and is a major step

forward over the previously reported prototypes. In particular it is able to refine Essence

specifications using all abstract types and operators of Essence, and it is shown to produce

effective models for several benchmark problems in CP.

Essence [Fri+08] is a language for specifying combinatorial (decision or optimisation)

problems. It has a high level of abstraction to allow users to specify problems without

making constraint modelling decisions, supporting decision variables whose types match

3



1. Introduction

1 language Essence 1 . 3
2

3 given w, g , s : i n t ( 1 . . )
4 l e t t i n g Gol fers be new type of s i z e g ∗ s
5 f ind sched : s e t ( s i z e w) of
6 p a r t i t i o n ( regular , s i z e g ) from Gol fers
7

8 such t h a t
9 f o r A l l week1 , week2 in ached , week1 != week2 .

10 f o r A l l group1 in pa r t s ( week1 ) .
11 f o r A l l group2 in pa r t s ( week2 ) .
12 |group1 i n t e r s e c t group2| < 2

Figure 1.1: Essence specification of the Social Golfers Problem

the combinatorial objects problems typically ask us to find, such as: sets, multi-sets, functions,

relations and partitions. First introduced by the language is its support for the nesting of

these types, allowing decision variables of type set of sets, multi-set of sets of functions, etc.

Hence, problems such as the Social Golfers Problem [Har01], which is naturally conceived of

as finding a set of partitions of golfers subject to some constraints, can be specified directly

without the need to model the sets or partitions as matrices.

An Essence specification (see [Fri+08] for full details), such as that in Figure 1.1, identifies:

the parameters of the problem class (given), whose values are input to specify the instance

of the class; the combinatorial objects to be found (find); and the constraints the objects

must satisfy to be a solution (such that). An objective function may also be specified

(min/maximising) and, for concision, identifiers may be declared (letting).

Today’s constraint solvers typically support decision variables with atomic types, such as

integer or Boolean, have limited support for more complex types like sets or multi-sets, and

no support for nested complex types. Hence, abstract specifications are refined by modelling

abstract decision variables as constrained collections of variables of unnested primitive

types. The system developed as a part of this thesis, unlike the older prototypes, employs a

system of rules to refine Essence specifications into constraint models in Essence
′ [Ren10],

a language derived from Essence mainly by removing facilities for abstraction and adding

4



1.1. Background

facilities common to existing constraint solvers and toolkits. From Essence
′ a tool such as

Tailor [Ren10] can be used to translate the model into the format required for a particular

constraint solver.

An abstract specification typically can be implemented by many alternative concrete

constraint models. Conjure is intended to generate these alternatives by providing multiple

refinement rules for each abstract type, corresponding to the various ways in which a

decision variable of that type can be modelled. Furthermore, for each way of modelling the

decision variables there can be multiple rules to generate alternative models for a constraint

on those variables. Consequently, Conjure often generates many alternative models for

an input specification. We aim to encode each rule that for some problem is used in the

generation of some good (or perhaps reasonable) model. Given a problem specification

and a set of rules the system generates all possible models. If we have encoded a sufficient

set of rules, then the kernels of all good (or reasonable) models of the problem should be

contained within the set of models. An alternative mode of operation would be to try to

restrict the set of models produced by Conjure to contain only the good models, however

this is not desirable at this point because 1) it is a much harder problem to only produce

the good models 2) models may have complementary strengths and producing a diverse

portfolio of models can be very valuable as well.

This thesis focuses on the refinement-based approach, in which a user writes abstract

constraint specifications to describe a problem at a higher level than that where modelling

decisions are normally made. Abstract constraint specification languages, e.g. Essence and

Zinc, support abstract variables with types for common mathematical structures such as sets,

multi-sets, functions, and relations, as well as nested types, such as set of sets and multi-set

of functions. Problems can often be specified very concisely in this way. For example, the

Social Golfers Problem [Har01], which is naturally conceived of as finding a set of partitions

of golfers subject to some constraints, can be specified directly (see Figure 1.1) without the

need to model the sets or partitions as matrices.

An Essence specification, such as that in Figure 1.1, identifies: the input parameters

5
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of the problem class (given), whose values define an instance; the combinatorial objects

to be found (find); and the constraints the objects must satisfy (such that). An objective

function may also be specified (min/maximising) and identifiers may be declared (letting).

Abstract constraint specifications must be refined into concrete constraint models for

existing constraint solvers. The Conjure system[Akg+11b] uses refinement rules to con-

vert an Essence specification into the solver-independent constraint modelling language

Essence
′ [Ren10]. From Essence

′ we use SavileRow
1 to translate the model into input for

a particular constraint solver while performing solver-specific model optimisations.

1.2 Publications

Research described in this thesis appeared partly in previous papers of mine. Most of these

papers were co-authored with Ian Miguel and Chris Jefferson, my two PhD supervisors.

Other co-authors in these papers are Alan Frisch, Brahim Hnich, Ian Gent, Peter Nightingale,

Lars Kotthoff, and Bilal Hussain.

All of the publications listed here are based primarily on my work.

[Akg+10b; Akg+10c; Akg+10a] were published in the first year of my PhD. They should

be considered as preliminary publications, mainly presenting the idea of generating multiple

alternative CP models starting from a high level problem specification language.

[Akg+11b] is the first publication which describes a concrete implementation of Conjure

and provides extensive evaluation of its capabilities. It describes how Conjure works

and proves the hypothesis that kernels of published CP models can be produced by an

automated modelling tool.

[Akg+11a] can be considered as an application paper. The Open Stacks problem was

the problem used for the Constraint Modelling Challenge in 2005. This paper presents a

6-years too late entry to the challenge. Conjure initially produced correct but poor models

for this problem; however, as a result of this exercise some new modelling transformations

1http://savilerow.cs.st-andrews.ac.uk
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were formulated to improve the generated models. These modelling transformations were

recorded in order to potentially improve Conjure’s modelling capabilities for other problems

as well.

[Akg+13b] presents two main contributions. First is generating symmetry breaking

constraints automatically, which improves models generated by Conjure beyond model

kernels. Second is two methods for automated model selection: racing and the Compact

heuristic.

[Akg+13a] presents the complete chain of tools we work on in the Constraints group

at the School of Computer Science in University of St Andrews. In addition to Conjure,

SavileRow, Minion and Dominion are in this tool-chain.

[Akg+13c] is a workshop paper describing current achievements and future directions in

automated modelling and automated model selection in CP.

1.3 Contributions

The main contribution of this thesis is the demonstration of the refinement based approach

to automated modelling in CP. Achieving this ambitious goal requires several techniques

such as proper handling of nested domains for decision variables, automatically posting

structural constraints for decision variables with abstract domains, and refining constraint

expressions with respect to the refinement of domains. Symmetry breaking constraints and

channelling constraints need to be posted automatically. Moreover, in order to increase the

utility of automated modelling, automated model selection is essential. Finally, modelling

transformations need to be encoded in a language as close as possible to CP modelling

languages in order to facilitate ease of use.

Following is a list of contributions of this thesis, each individually elaborated throughout

the thesis and all collectively supporting the main contribution of the thesis: achieving

effective automated modelling in CP using a refinement based approach.

Refinement of arbitrarily nested domains In Essence, abstract domain constructors can
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be nested arbitrarily to create the domains of decision variables and parameters. The

techniques presented in this thesis are able to handle the refinement of domains with

arbitrary levels of nesting.

Symmetry breaking Demonstrating how modelling symmetry can be broken as soon as it

enters the model to improve the produced models beyond model kernels.

Automated channelling Ability to represent a single abstract decision variable in multiple

ways and post channelling constraints between different representations automatically.

Finer grained expression refinement In comparison to the prototype implementations of

Conjure, the work presented in this thesis avoids flattening of expressions. This avoids

generation of unnecessary auxiliary variables. It also greatly reduces the number of

required rules to achieve full coverage of Essence.

Conjure As a part of this thesis the automated constraint modelling tool Conjure is

developed from scratch. This allowed me to empirically test ideas about automated

model generations.

Full coverage of Essence There was a prototype implementation of Conjure partly presen-

ted in [Mar+08b]. However that implementation was very limited, it did not support

all of Essence. It was particularly a prototype to study automated generation of

channelling constraints.

Rule language A domain-specific rule language is designed and implemented to encode

modelling transformations. This enables easier authoring and maintenance of rules.

Extensibility Thanks to the rule language, finer grained expression refinement, and rep-

resentation independent (horizontal) rules extending Conjure with new variable

representations is very easy. This was a particularly desired feature because new ways

of modelling existing problems is discovered continuously.
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Racing A model selection technique which can be used when a representative collection of

instance data is available for a problem class.

The Compact heuristic A light-weight model selection heuristic which tries to generate the

most compact model for a problem class. This is considered light-weight because it

does not need any instance data and produces a single model without any further

analysis.

Evaluation Conjure’s ability to successfully refine real-life problem specifications and

produce kernels of published models is experimentally evaluated. The model selection

techniques are also experimentally evaluated.

1.4 Thesis structure

This thesis is structured as follows.

Chapter 2 outlines related work in the area of automated modelling in CP and program

transformation in general. Chapter 3 gives a complete example problem specification in

Essence, followed by a step by step description of Conjure’s operation on this problem

specification. This chapter is aimed to give an intuitive understanding of the general ideas

presented in the thesis. Chapter 4 describes the design and architecture of the automated

modelling tool Conjure. It does not go into details about how modelling transformations

are defined, instead it describes how the transformations are applied.

Chapter 5 describes the rule language together with its features and operators. It

also describes the three different kinds of rules: representation decision rules, horizontal

expression refinement rules, and vertical expression refinement rules. Chapter 6 gives a

listing of actual rules that are in Conjure’s rules database. The chapter is structured to

contain a section for each abstract type constructor in Essence. Each section contains a

number of subsections, one for each representation option. The subsections contain the

corresponding representation selection rules and vertical rules specific to the representation.
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In addition to these sections, horizontal rules are given in a section of their own since they

are representation independent.

Chapter 7 demonstrates how by only adding a few rules a new representation for sets,

the Gent representation, can be added for set variables; and Remarkably, only two rules

are needed to get a fully working representation. A third rule is added to demonstrate

how new vertical rules can be added to improve the quality of generated models. A new

representation for partial functions is also added using only a representation selection rule

and two vertical expression refinement rules.

Chapter 8 describes automated symmetry breaking in Conjure. Adding symmetry

breaking improves the quality of CP models produced by Conjure drastically. Chapter 9

demonstrates how Conjure can be applied to a wide range of problem specifications. This

chapter also shows that some of the produced models are actually interesting: they were

published in peer reviewed publications by CP experts. In addition, two model selection

methods are described to evaluate Conjure’s ability to identify effective models from among

all models it can generate.

Chapter 10 concludes the thesis by giving a summary and a discussion of future research

directions. The experimental results of this thesis can be found at http://ozgur.host.cs.

st-andrews.ac.uk/thesis/experiments.zip.
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Chapter 2

Related Work

This chapter describes the related work in the areas of modelling in CP, automated modelling

in particular, and approaches to program transformation in general.

2.1 Refinement based approaches

A very popular approach to automated modelling in CP is using a high-level problem

specification language together with automated refinement of concrete CP models. Auto-

mated refinement is the process of successively translating the problem specification into

a concrete CP model, where the model expresses the decision variables and constraints

explicitly. Concrete CP models are then solved using a constraint solver and solutions are

translated back to the high-level language. The most important tools and languages which

took this approach are presented in the rest of this section.

2.1.1 OPL

OPL [Van+99; Van99] is a modelling language for mathematical programming and constraint

programming. It is generally regarded as the first high level modelling language; before

OPL the intercase to CP solvers was through directly manipulating internal data structures

of a solver. OPL offers decision variables with integer and enumerated variables, and only

operators relating to these types of variables. OPL does not offer abstract domains.
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2.1.2 ESRA

ESRA [Fle+03] is a language with special focus to decision variables with relation domains.

It is translated to OPL by refining relation domains and operators. It does not however

consider multiple alternative ways when doing refinement; each abstract domain and

constraint can be refined in only one way. Moreover, the abstract domains offered by ESRA

cannot be nested arbitrarily.

2.1.3 NP-Spec

NP-Spec [Cad+00] is a language which allows the specification of NP-complete problems in

a subset of existential second order logic. It provides a small number of high level domains

–sets and partitions of integers– which are refined down to decision variables with simpler

domains. Like ESRA, NP-Spec provides only one way to model each high-level domain and

operator; hence, does not allow for the generation of alternative models.

2.1.4 F and Fiona

F [Hni03] is a language with function variables. Problems modelled in F are refined into OPL

using a system called Fiona. F supports function attributes like total and bijective. Function

domains in F cannot be nested arbitrarily, a function variable is simply a mapping between

non-nested domains like integers or enumerations. In contrast to OPL, ESRA and NP-Spec,

F considers multiple refinements of functions. It contains a number of heuristics to choose

amongst different refinement options for function variables. Fiona always generates a single

output model using these heuristics. If the same function variable is refined in multiple

ways within a single model, Fiona is able to generate channelling constraints automatically.

2.1.5 CGRASS

The CGRASS [Fri+02] system explores the idea of reformulating CP models using a collection

of rules in order to improve them. It does not change representations of decision variables;
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however it can rearrange constraint expressions and reduce domains of decision variables.

CGRASS is mostly problem instance based. The authors demonstrate how some implied

constraints and symmetry breaking constraints can be added using a system of reformulation

rules. CGRASS is limited to integer variables, and arithmetic and logical operators on integer

expressions.

2.1.6 TAILOR and SAVILEROW

Tailor [Ren10] is an automated modelling tool for the solver independent CP modelling

language Essence
′. It can target multiple solvers and performs a variety of problem instance

level reformulations, such as Common Sub-expression Elimination (CSE) and elimination of

duplicate constraints. Recently Tailor was renamed to SavileRow
1.

2.1.7 MiniZinc

MiniZinc [Net+07] is a medium-level constraint modelling language. It contains features

common to many CP modelling languages such as boolean and integer domains, and arrays

for collections of these variables. MiniZinc can be used to describe problem class models,

however it does not perform and reformulations at the class level. When presented with

problem instance data, the class model is instantiated into an instance model which can be

targeted to one of several solver backends. MiniZinc uses a solver-dependent instance level

language called FlatZinc to interact with solvers.

2.1.8 Zinc

Zinc [Mar+08a] is a higher level constraint modelling language in comparison to MiniZinc.

It provides decision variables with set domains as well as user defined record-like domains.

Zinc is compiled to MiniZinc, and in principle it can permit an exploration of different

modelling choices. However, to the best of our knowledge, the existing Zinc compiler only

produces one MiniZinc output model for an input high level model in Zinc.

1http://savilerow.cs.st-andrews.ac.uk
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2.2 Example driven automated modelling

The tools and languages presented in this section take a very different approach to automated

modelling in CP in comparison to the tools and languages presented in the previous section.

2.2.1 O’CASEY

O’Casey [Lit+03] is a case based reasoning tool. It uses recordings of previous problem

solving episodes. Problems are paired with problem instances to form a case. The experience

obtained from cases are mainly the selection of propagators and search heuristics. Hence,

the reformulations provided by O’Casey do not change variable representations or the

statement of constraint expressions.

2.2.2 Conacq

Conacq [Bes+06] is a SAT-based version space algorithm to acquire constraint networks. Its

inputs are the set of decision variables, and a collection of positive and negative examples.

Positive examples are valid solutions to the problem and negative examples and non-

solutions. It automatically generates constraints by applying machine learning techniques.

2.2.3 Constraint and Model Seeker

The Constraint Seeker [Bel+11] and the Model Seeker [Bel+12] are examples of example-

driven automated modelling in CP. In comparison to Conacq, these tools focus on the

automated acquisition of global constraints. They use a large collection of positive and neg-

ative fully instantiated instance models to learn individual global constraints and complete

models respectively.

2.3 Program transformation and refactoring

Program transformation is any operation that takes a computer program and generates

another program. Refactoring is a special case of program transformation where generally
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the external behaviour of the program is not effected by the transformations. In the case

of automated modelling in CP we are focusing on a specific case of program transform-

ation, however it is worth mentioning other applications of program transformation and

reformulation since they are useful in a broader context.

In the simplest case, refactoring is used through Integrated Development Environments

(IDEs) to reorganise program code. Most refactorings are trivial operations like renaming

identifiers, adding new arguments to existing functions, or extracting function definitions

from a selected code fragment.

Non-trivial uses of program transformation and refactoring include rearranging program

code before or during compilation in order to generate highly-optimised executables.

As early as 1977, refactoring tools were used to transform recursive programs by

eliminating unnecessary applications of fold/unfold functions [Bur+77]. More recently, the

Haskell Refactorer (HaRe) was developed to provide users a large catalog of refactorings

like renaming and lambda lifting [Bro+11]. There are small structural changes, however

using multiple steps of such small changes users can perform non-trivial refactorings.

The Paraphrase project [Bro+13; Ham+13] employs advanced refactoring techniques to

restructure programs into a form which is more suited to parallel execution than the original

program.

In addition to stand-alone program transformation tools, some modern compilers

provide facilities to programmers to apply program transformations during compilation. For

example, using rewrite rules in the Haskell compiler GHC programmers can express domain

specific optimisations that the compiler can otherwise cannot discover by itself [Jon+01].

2.4 Summary

This chapter presents existing tools, languages and approaches for automated modelling in

CP. Some of these approaches, similar to the approach presented in this paper, use program

transformation techniques to translate models written in higher level languages down to
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lower level languages that are closer to the input languages of CP solvers. Distinguishing

features of Conjure and Essence are support for a rich collection of abstract domain

constructors and arbitrarily nested types in the input language, operating at the problem

class level instead of at the problem instance level, and the generation of multiple alternative

models instead of a single model. Conjure also differs from existing tools by the use

of a domain specific rewrite rule language and its special focus on ease of extensibility.

Example driven approaches are also briefly surveyed. Instead of requiring a high level

problem description from the user they only require a statement of decision variables and

the constraint expressions are automatically learned from positive and negative examples

of solutions for the original problem. Finally, the last section gives examples of program

transformation and refactoring tools outside of the narrow context of automated modelling

in CP.
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Chapter 3

CONJURE by Example

This chapter is a cross section of the most important contributions of this thesis. It demon-

strates the operation of Conjure on a simple problem specification in Essence. In doing

so, it exemplifies some constructs of the input language Essence and outlines the output

language Essence
′ in comparison. It also shows what transformations are applied to the

given problem step by step to reach the final output of alternative CP models. However, it

does not show how the transformations are encoded or implemented, those are covered in

later chapters.

3.1 ESSENCE and ESSENCE′

Essence is a highly abstract problem specification language. Specifying problems in Essence

does not require CP modelling decisions to be made. In order to facilitate a high level of

abstraction, it provides decision variables with abstract domains and a rich set of operators

defined on such decision variables.

On the other hand, Essence
′ is a typical CP modelling language. It is only provides

decision variables with concrete domains and operators defined on such decision variables.

A thorough definition of both languages is given in later chapters, only a brief discussion

will be given in this section.
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1 language Essence 1 . 3
2

3 given o b j e c t new type enum ,
4 given weight , value : func t ion ( t o t a l ) o b j e c t −−> i n t ( 1 . . ) ,
5 given maxWeight , minValue : i n t ( 1 . . )
6 given knapsackSize : i n t ( 1 . . )
7

8 f ind knapsack : s e t ( s i z e knapsackSize ) of o b j e c t
9

10 such t h a t
11 maxWeight >= sum i in knapsack . weight ( i ) ,
12 minValue <= sum i in knapsack . value ( i )

Figure 3.1: An Essence problem specification of the Knapsack Problem

Concrete decision variable A concrete decision variable is one whose domain is directly

supported in the target solver. Typically solvers support Booleans and Integers with

finite domains. Most solvers also support arrays of decision variables with these

domains. Essence
′ is no exception, it supports bool, int and matrix domains for

decision variables.

Abstract decision variable An abstract decision variable is one whose domain is not dir-

ectly supported in the target solver. Such domains have to be represented using a

collection of concrete decision variables. This usually requires posting additional

constraints to maintain invariants of the original abstract domain. Essence supports

multiple kinds of abstract domains, built using the domain constructors set, mset,

function, relation, and partition. It also supports enumerated types, unnamed

types, and tuples.

3.2 Problem specification

A simplified version of the well known Knapsack problem is chosen for its possible familiar-

ity to the reader and its simple problem specification in Essence.

Given a collection of objects, each with an associated weight and value, find a subset of
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these objects such that the total weight of the selected items is less than that we can carry

and the total value is greater than a given amount.

An optimisation variant of this problem might be more interesting: instead of selecting

subset of items such that the total value is greater than a given minValue, the problem might

be to maximise the total value. Indeed, this variant of the problem is also very easy to

specify in Essence, however it does not add a lot of value to our working example.

Another possible extension to this problem can be the addition of volume constraints. In

addition to limiting the total weight of selected items, the total volume of the selected items

can also be limited. This constraint can be expressed, and will be handled, very similarly to

the weight constraint. Hence it is left out.

let us start by describing the problem specification Figure 3.1 for the Knapsack Problem.

Line 1 is the language declaration; it tells Conjure that this file is written using the 1.3

version of the Essence language. This line will be common to all problem specifications

given throughout the thesis.

Lines 3 to 6 are given statements. A given statement is used to declare a problem

parameter. Problem specifications written in Essence can be parameterised by problem data

and the data can also use the rich set of types and domains available in Essence. Line 3

declares object to be an enumerated domain, whose members will be given in a parameter

file. Line 4 declares two parameters weight and value; both of which are total mappings

from elements of the enumerated type object to positive integers. Line 5 declares two

parameters maxWeight and minValue; both of which are positive integers. Line 6 declares

the last parameter, knapsackSize, the exact number of objects our knapsack can carry.

Line 8 is the declaration of the only decision variable in the problem specification. Here,

knapsack is a set variable. It needs to contain a fixed number of elements in it, and each

element needs to be an object.

The constraints of the problem are given on lines 10 to 12. Here, weight(i) is a

function application, it will look the weight of object i in the parameter function. Similarly

for value(i). The specification of the constraints also contain a quantification over the
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1 language Essence 1 . 3
2

3 given item_Count : i n t ( 1 . . )
4 l e t t i n g item be domain i n t ( 1 . . item_Count )
5 given weight , value : func t ion ( t o t a l ) item −−> i n t ( 1 . . ) ,
6 given maxWeight , minValue : i n t ( 1 . . )
7 given knapsackSize : i n t ( 1 . . )
8

9 f ind knapsack : s e t ( s i z e knapsackSize ) of item
10

11 such t h a t
12 maxWeight >= sum i in knapsack . weight ( i ) ,
13 minValue <= sum i in knapsack . value ( i )

Figure 3.2: After enumerated domains are replaced with integer domains.

values of a decision variable set. This is an unusual feature of Essence, generally CP

modelling languages do not allow modellers to write quantified expressions involving

decision variables.

The following sections will show how Conjure produces an output model starting from

this problem specification step by step.

3.3 Handling declarations with enumerated domains

A simple transformation is one where Conjure changes each enumerated domain into

an integer domain. This is required because the output language, Essence
′ does not

support enumerated domains. In this example, the values of the enumerated domain

will be given in a parameter file. We change the problem specification to require a single

integer as a parameter, that is the number of values in the enumerated domain. This way,

declarations with an enumerated domain can be replaced by integer domains. The result of

this transformation is given in Figure 3.2.
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1 language Essence 1 . 3
2

3 given item_Count : i n t ( 1 . . )
4 l e t t i n g item be domain i n t ( 1 . . item_Count )
5 given weight , value : func t ion ( t o t a l ) item −−> i n t ( 1 . . ) ,
6 given maxWeight , minValue : i n t ( 1 . . )
7 given knapsackSize : i n t ( 1 . . )
8

9 f ind knapsack : s e t ( s i z e knapsackSize ) of item
10

11 given weight_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
12 given value_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
13 f ind knapsack_Occr : matrix indexed by [ item ] of bool
14

15 such t h a t
16 maxWeight >= sum i in knapsack#Occr . weight #1D( i ) ,
17 minValue <= sum i in knapsack#Occr . value #1D( i ) ,
18 knapsackSize = sum i : item . t o I n t ( knapsack_Occr [ i ] )

Figure 3.3: After representation selection, using the Occr representation.

3.4 Choosing representations

The abstract types of Essence are not available in Conjure’s output language Essence
′; nor

in any other existing constraint modelling language. A very important aspect of automated

modelling with Conjure is type refinement. In our running example, there is only one

decision variable, knapsack, a set variable. In addition, there are two parameters with

abstract domains: weight and value both having function domains.

Conjure has at least one representation option for each abstract domain. One possible

representation for a total function is using a one-dimensional matrix. A possible representa-

tion for a set variable is using an occurrence matrix, a matrix of Boolean variables for every

value that can be in the set. A true assignment indicates membership in the set. Another

possible representation for a set variable is using an explicit matrix, a matrix with a slot for

each value in the set.
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1 language Essence 1 . 3
2

3 given item_Count : i n t ( 1 . . )
4 l e t t i n g item be domain i n t ( 1 . . item_Count )
5 given maxWeight , minValue : i n t ( 1 . . )
6 given knapsackSize : i n t ( 1 . . )
7

8 given weight_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
9 given value_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,

10 f ind knapsack_Occr : matrix indexed by [ item ] of bool
11

12 such t h a t
13 maxWeight >= sum i : item , knapsack_Occr [ i ] . weight_1D [ i ] ,
14 minValue <= sum i : item , knapsack_Occr [ i ] . value_1D [ i ] ,
15 knapsackSize = sum i : item . t o I n t ( knapsack_Occr [ i ] )

Figure 3.4: After expression refinement, using the Occr representation.

3.4.1 Using the Occurrence representation

Choosing the 1D representation for both function domains, and the Occr representation for

the set domain, we reach the intermediate problem specification given in Figure 3.3.

Here, lines 11 to 13 are newly added: they are the concrete representations of original

declarations with abstract domains. Line 18 is also newly added, this line is posting a new

constraint to make sure the concrete representation of a set using a Boolean matrix will

contain exactly as many elements as the original set variable. Such constraints are called

structural constraints and they are added to the model when needed by the representation.

Another important point to notice is representation markers attached to use sites of

abstract decision variables and parameters. These markers are inserted at this phase to

direct expression refinement at a later phase.

Three new declarations are added in Figure 3.3. These are representations of abstract

decision variables in the original problem specification. At this point, the rest of the

problem specification is still written in terms of the original abstract decision variables.

The next step, expression refinement, will rewrite expressions using representations of

decision variables instead of the original abstract decision variables. When every expression
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1 language Essence 1 . 3
2

3 given item_Count : i n t ( 1 . . )
4 l e t t i n g item be domain i n t ( 1 . . item_Count )
5 given weight , value : func t ion ( t o t a l ) item −−> i n t ( 1 . . ) ,
6 given maxWeight , minValue : i n t ( 1 . . )
7 given knapsackSize : i n t ( 1 . . )
8

9 f ind knapsack : s e t ( s i z e knapsackSize ) of item
10

11 given weight_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
12 given value_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
13 f ind knapsack_Expl : matrix indexed by [ i n t ( 1 . . knapsackSize ) ] of item
14

15 such t h a t
16 maxWeight >= sum i in knapsack# Expl . weight #1D( i ) ,
17 minValue <= sum i in knapsack# Expl . value #1D( i ) ,
18 a l l D i f f ( knapsack_Expl ) ,
19 f o r A l l i : i n t ( 1 . . knapsackSize−1) .
20 knapsack_Expl [ i ] < knapsack_Expl [ i +1]

Figure 3.5: After representation selection, using the Expl representation.

involving a reference to an abstract decision variable is rewritten, abstract decision variables

are removed from the problem specification.

The complete CP model after expression refinement is given in Figure 3.4. Lines 13 and 14

are changed in comparison to the previous step. Function application for 1D representation

of total functions is rewritten into a simple matrix dereference. The refinement of the

quantified expression is slightly more involved though: it requires creating a new quantified

expression over a finite integer domain. Moreover a guard is added to make sure the total

sum only contains weights of those objects that are in the set.

All problem constraints are rewritten to use concrete versions of abstract decision

variables and parameters. At this point the decision variable knapsack, the parameters

weight and value are not referenced in any part of the problem specification. Hence, they

can be deleted.

23



3. Conjure by Example

1 language Essence 1 . 3
2

3 given item_Count : i n t ( 1 . . )
4 l e t t i n g item be domain i n t ( 1 . . item_Count )
5 given maxWeight , minValue : i n t ( 1 . . )
6 given knapsackSize : i n t ( 1 . . )
7

8 given weight_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
9 given value_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,

10 f ind knapsack_Expl : matrix indexed by [ i n t ( 1 . . knapsackSize ) ] of item
11

12 such t h a t
13 maxWeight >= sum i : i n t ( 1 . . knapsackSize ) .
14 weight_1D [ knapsack_Expl [ i ] ] ,
15 minValue >= sum i : i n t ( 1 . . knapsackSize ) .
16 weight_1D [ knapsack_Expl [ i ] ] ,
17 f o r A l l i : i n t ( 1 . . knapsackSize−1) .
18 knapsack_Expl [ i ] < knapsack_Expl [ i +1]

Figure 3.6: After expression refinement, using the Expl representation.

3.4.2 Using the Explicit representation

Again, choosing the 1D representation for both function domains, and the Expl repres-

entation for the set domain, we reach the intermediate problem specification given in

Figure 3.5.

Similar to the previous section, the concrete representations of original declarations

with abstract domains and structural constraints are added. Also, each use site of abstract

declarations variables and parameters are marked with the name of the representation to

direct expression refinement.

An important observation here is about symmetry breaking. The structural constraint on

line 18 is enough to maintain the distinctness requirement of the original abstract domain.

However, using an allDiff we introduce symmetry, that is there are multiple assignments to

the matrix domain which all represent the same set value. In order to break the symmetry1,

we introduce another structural constraint given on lines 19 and 20. Adding this constraint

1In general, a set being represented using the Explicit representation does not have to contain integers in it.
Symmetry breaking as applied by Conjure in its full generality is explained in Chapter 8.
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1 language Essence 1 . 3
2

3 given item_Count : i n t ( 1 . . )
4 l e t t i n g item be domain i n t ( 1 . . item_Count )
5 given weight , value : func t ion ( t o t a l ) item −−> i n t ( 1 . . ) ,
6 given maxWeight , minValue : i n t ( 1 . . )
7 given knapsackSize : i n t ( 1 . . )
8

9 f ind knapsack : s e t ( s i z e knapsackSize ) of item
10

11 given weight_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
12 given value_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
13 f ind knapsack_Expl : matrix indexed by [ i n t ( 1 . . knapsackSize ) ] of item
14 f ind knapsack_Occr : matrix indexed by [ item ] of bool
15

16 such t h a t
17 maxWeight >= sum i in knapsack# Expl . weight #1D( i ) ,
18 minValue <= sum i in knapsack#Occr . value #1D( i ) ,
19 knapsackSize = sum i : item . t o I n t ( knapsack_Occr )
20 f o r A l l i : i n t ( 1 . . knapsackSize−1) .
21 knapsack_Expl [ i ] < knapsack_Expl [ i +1] ,
22 knapsack# Expl = knapsack#Occr

Figure 3.7: After representation selection, in a channelled model.

renders the allDiff redundant, so we do not actually add it to the model.

The complete CP model after expression refinement is given in Figure 3.6. Lines 13 to

16 are changed in comparison to the previous step. Similar to what happened in the Occr

representation, function application for 1D representation of total functions is rewritten into

a simple matrix dereference. The refinement of the quantified expression is turned into a

new quantified expression over a finite integer domain. This time the quantified expression

does not require a guard, and it uses a simple matrix dereference to access an object in the

set.

3.4.3 Channelled models

If an abstract decision variable or parameter is used in multiple contexts in a problem

specification, a different representation may be chosen for each use site. In cases when
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3. Conjure by Example

1 language Essence 1 . 3
2

3 given item_Count : i n t ( 1 . . )
4 l e t t i n g item be domain i n t ( 1 . . item_Count )
5 given maxWeight , minValue : i n t ( 1 . . )
6 given knapsackSize : i n t ( 1 . . )
7

8 given weight_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,
9 given value_1D : matrix indexed by [ item ] of i n t ( 1 . . ) ,

10 f ind knapsack_Expl : matrix indexed by [ i n t ( 1 . . knapsackSize ) ] of item
11 f ind knapsack_Occr : matrix indexed by [ item ] of bool
12

13 such t h a t
14 maxWeight >= sum i : i n t ( 1 . . knapsackSize ) .
15 weight_1D [ knapsack_Expl [ i ] ] ,
16 minValue <= sum i : item , knapsack_Occr [ i ] . value_1D [ i ] ,
17 knapsackSize = sum i : item . t o I n t ( knapsack_Occr )
18 f o r A l l i : i n t ( 1 . . knapsackSize−1) .
19 knapsack_Expl [ i ] < knapsack_Expl [ i +1] ,
20 f o r A l l i : i n t ( 1 . . knapsackSize ) .
21 knapsack_Occr [ knapsack_Expl [ i ] ] ,
22 f o r A l l i : item , knapsack_Occr [ i ] .
23 e x i s t s j : i n t ( 1 . . knapsackSize ) .
24 knapsack_Expl [ j ] = i

Figure 3.8: After expression refinement, in a channelled model.

multiple representations are selected for the same decision variable, channelling constraints

are required to make sure different versions of the same abstract decision variable get

assigned to the same value in every solution.

In the running example, the decision variable knapsack occurs in two different contexts.

Conjure can select different representations for it in different contexts. Figure 3.7 shows the

intermediate problem specification after representation selection for a channelled model.

In this alternative model, both concrete representations are added to the model at the

same time. Notice the representation markers, the first constraint on line 17 is marked to

use the Explicit representation for knapsack, whereas the second constraint on line 18 is

marked to use the Occurrence representation.

Structural constraints for both representations are added to the model (lines 19 to 21).
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3.5. Summary

Moreover, on line 22, a channelling constraint is added. The channelling constraint is simply

an equality constraint on two set variables, which happen to refer to the same set variable

but represented differently. Luckily, this is the only specific treatment Conjure needs to do

for channelling constraints, from here on they will be refined in the same way as the other

constraints in the original problem.

Highlighted in Figure 3.8 is the refinement of the channelling constraint.

3.5 Summary

This chapter demonstrated Conjure’s operation on a concrete problem specification without

going into details of how each step actually works. Later chapters of the thesis will describe

how Conjure is designed and implemented in its full generality.
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Chapter 4

Design and Architecture

This chapter is describes the design and architecture of Conjure. It is divided into two

parts. In the first part we look from the outside-in and see the components of a constraint

programming tool-chain, motivations behind having such a tool-chain, and the part Conjure

plays in enabling an effective constraint programming system. In the second part we focus

on Conjure’s internals and see how it operates, the pipeline of operations, and how it uses

a rule language to describe most of its transformations.

4.1 Outside-In: The Tool-Chain

This section describes Conjure in the context of a tool-chain comprised of Conjure itself,

SavileRow the instance level constraint modelling assistant, and the constraint solver

Minion.

4.1.1 MINION and its input language

Minion[Gen+06] is a powerful constraint solver. It takes as input a problem instance model

written in its specific input language. The input language cannot encode problem-class

models, it is very low level and it closely matches solvers internals. A model consists of

declaration of decision variables, posting constraints and optionally the objective value.

Domains in Minion are basically integers with finite domains. The solver provides four
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4. Design and Architecture

different implementations of domains for decision variables: BOOL, DISCRETE, BOUND, and

SPARSEBOUND. Minion’s type system does not discriminate between different kinds of

domains; however, some constraints only work on decision variables with certain kinds of

domains.

BOOL Boolean domains. Decision variables with Boolean domains are used very

commonly for logical expressions.

DISCRETE Finite integer domains specified by a lower and an upper bound. Propagation

and search can prune individual values from the domain of a decision variable

with a DISCRETE domain. Namely, arbitrary holes can be created in the

domains of the variables.

BOUND Finite integer domains specified by a lower and an upper bound. Only the

bounds of the domain are maintained. Propagation and search can only prune

from the lower or the upper bound from the domain of a decision variable

with a BOUND domain. Namely, holes cannot be put in the domains of the

variables.

SPARSEBOUND Finite integer domains specified by listing all the elements of the domain,

but only the upper and lower bounds of the domain may be updated during

search. Propagation and search can only prune from the lower or the upper

bound from the domain of a decision variable with a SPARSEBOUND domain.

Namely, any holes in the domain must be there at the time of declaration and

holes cannot be created during the solving process.

The constraint language of Minion also closely follows the internals of the solver.

Constraints are mostly flat. In this context, a constraint expression is flat if it does not take

other constraints as arguments. However, Minion still has some non-flat constraints. An

indispensable non-flat constraint is constraint reification via the reify constraint. Using

reify, we can relate the truth value of a constraint to an auxiliary boolean decision variable
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4.1. Outside-In: The Tool-Chain

and use this decision variable in the rest of the model instead of the constraint itself.

Constraint reification is not the only non-flat constraint, Minion also has watched-or

and watched-and which take a list of constraints as arguments and post logical-or and

logical-and conditions on the arguments respectively.

Some constraints have multiple alternative implementations; such as alldiff and

gacalldiff. Generally, different versions of the same constraint enforce different levels of

consistency.

Writing Minion input by hand is not practical for a few reasons. First is the lack of

parameterised models; generally a user wants to model a class of problems instead of a

single instance. Second is the lack of abstraction; a user will have to be familiar with a lot of

low level details about Minion before they can write correct models. In order to write good

models, they will have to make a lot of low level decisions possibly without understanding

all the trade-offs. Third is the verbosity of the input language. More often than not, CP

modelling requires experimentation. Working with such a verbose language limits the

ability to experiment. For instance, changing the viewpoint of the model or changing how a

constraint is formulated requires rewriting almost the whole model.

4.1.2 SAVILEROW and ESSENCE′

SavileRow is a constraint modelling assistant. It takes as input a CP model written in

Essence
′. Essence

′ is a CP modelling language that allows encoding of problem-class

models, and allows constraint expressions and the objective to contain non-flat expressions.

Using non-flat expressions let the modeller write mathematical equations using arithmetic

and logical operators and use the results of intermediate expressions as parts of larger

expressions. In this setting, constraint reification becomes implicit. In effect, the truth

value of a constraint expression can be treated as a Boolean value in every context where a

simple Boolean literal can be used. As an example, one feature of Essence
′ which assists CP

modellers is the overloading of the matrix indexing operator to use the element constraint if

needed, and use a simple matrix dereference when the argument is not a decision variable.
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4. Design and Architecture

Conjure

SavileRow

Minion

SolutionParametersSpecification

Essence

Essence′

Minion

Figure 4.1: Automated Constraint Modelling Tool-Chain

Although Essence
′ adds more expressivity to the expression language, it does not add

richer domains. In Essence
′ the domains of decision variables are essentially finite integer

ranges, similar to domains in Minion’s input language.

Essence
′ provides a level of abstraction and expressivity that is comparable to that

of other CP modelling languages. CP modellers can use Essence
′ to write problem class

models, then use SavileRow to instantiate parameters and generate a Minion instance

model, solve it using Minion and finally use SavileRow to translate solutions of Minion to

solutions represented using Essence
′. Thanks to the higher level of abstraction provided by
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4.1. Outside-In: The Tool-Chain

Essence
′ (in comparison to Minion), most of the shortcomings of using Minion’s input

directly are solved. Some low level decisions like which kind of domain to use for a decision

variable are made automatically by SavileRow. Refactoring models is relatively easier

because the language is less verbose.

SavileRow does not merely translate Essence
′ to Minion.It also employs powerful micro-

modelling optimisations. These optimisations include common subexpression elimination

(CSE), constant folding, rearranging weighted sums and etc. Most of these optimisations

become more effective after parameter instantiation, because more information is available

at this point. SavileRow can also target multiple solvers. Essence
′ is a solver independent

CP modelling language, and SavileRow is the translator which makes multiple solver

accessible. We focus on the Minion backend in this thesis because it is the most mature

backend, and working with multiple solvers does not add value to the key contributions of

this thesis.

4.1.3 CONJURE and ESSENCE

Conjure is an automated CP modelling tool. Instead of requiring the user to produce a

concrete CP model, it takes as input an abstract problem specification written in Essence;

and generates automatically Essence
′ models as output. Essence is a high-level problem

specification language. It provides a rich set of built-in domains and domain constructors;

such as sets, multi-sets and functions. Decision variables can have these domains so as

to precisely encode what they mean. Without the need to model these complex domains

via multiple decision variables with simpler domains and relating them in the rest of

the problem specification via additional constraints. The full set of domains and domain

constructors in Essence are given in Table 4.1.

Another feature of Essence is to help enable succinct problem specifications is domain

attributes. Attributes further restrict (i.e. make precise) an abstract domain, so the user of

Essence does not need to use constraints to achieve the desired effect. For instance, a set

variable can have a minSize attribute attached to it, which which make sure the values of a
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4. Design and Architecture

decision variable with this attribute can only be sets containing at least a given number of

elements.

Essence is statically typed. For a decision variable or a parameter, stripping attributes

from the domain leaves us with the type. Essence also has a rich collection of operators

to write expressions of using smaller expressions with abstract types. For example, for

functions, there is an inverse operator, which makes sure two functions are inverses of

each other. For relations, relation projection lets a use create a relation of smaller arity while

fixing some of the components to a specific value. The complete set of operators in Essence

is given in Table 4.3.

In addition to those listed in the figure, Essence provides a rich collection of quantified

expressions. Many CP modelling languages allow quantifiers such as forAll, exists, and

sum to be used over finite integer ranges. This is a very powerful feature and Essence (as

well as Essence
′) have these constructs.

Generally, quantified variables take values from the given integer range. The value of

the whole quantified expression is determined by unrolling the quantified expression and

aggregating each item of this unrolling depending on the quantifier keyword. Conjunction,

disjunction and addition are used respectively for forAll, exists and sum quantifier

keywords.

In addition to this conventional understanding of quantified expressions, Essence

allows any domain to be used instead of a simple integer range in quantified expressions.

This means, a constraint expression can be written forAll values of a finite multi-set

domain. Essence also allows quantification over arbitrary set and multi-set decision variable

expressions.

For example, the following constraint posts the condition that every element in a set

decision variable x has to be even if that element is strictly greater than 10.

f o r A l l i in x , i > 10 . i % 2 = 0
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Domain Kind Handling

bool Concrete Kept unchanged
int Concrete Kept unchanged
enumerated Abstract Mapped to integers
unnamed Abstract Mapped to integers
tuple ( τ1, ..., τi, ... ) Abstract Separated into components
set of τ Abstract Represented
mset of τ Abstract Represented
function τ1 -> τ1 Abstract Represented
relation of ( τ1, ..., τi, ... ) Abstract Represented
partition from τ Abstract Represented

Table 4.1: Domains in Essence

Domain Attributes

set of τ size, minSize, maxSize
mset of τ size, minSize, maxSize, minOccur, maxOccur
function τ1 -> τ1 total, partial, injective, surjective, bijective
relation of ( τ1, ..., τi, ... ) size, minSize, maxSize
partition from τ size, minSize, maxSize, regular, complete, partSize,

minPartSize, maxPartSize, numParts, minNumParts,
maxNumParts

Table 4.2: Domains in Essence

4.1.3.1 Explicit guards

A quantified expression has 3 main parts. The first part is preamble where a quantifier

keyword -forAll, exists, sum- is given together with a quantified variable declaration.

The second part is optional and contains a guard. Guard is a boolean expression, and it is

written using a comma after the preamble of a quantified expression. Conceptually, guards

can be viewed as indicating whether the body of a quantified expression is active or not

for each value of the quantified expression. The third part is the body part. In the above

example forAll i in x is the preamble, i > 10 is the guard, and i % 2 = 0 is the body

of the quantified expression.
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Domain Attributes

set of τ union, intersect, \ (difference), subset, subseteq, supset,
supseteq, |x| (cardinality), in, max, min

mset of τ union, intersect, \ (difference), subset, subseteq, supset,
supseteq, |x| (cardinality), in, freq, hist, max, min

function τ1 -> τ1 union, intersect, \ (difference), subset, subseteq, supset,
supseteq, |x| (cardinality), defined, range, function
application, inverse, preImage

relation of ( τ1, ..., τi, ... ) union, intersect, \ (difference), subset, subseteq, supset,
supseteq, |x| (cardinality), relation application, relation
projection

partition from τ |x| (cardinality), together, apart, participants, parts,
party

Table 4.3: Operators in Essence

4.1.4 The tool-chain

The complete tool-chain is given in Figure 4.1. An Essence problem specification is input

to the Conjure system, which employs a system of modelling transformations to refine

the specification into a concrete CP model in the Essence
′ language. A CP model typically

describes a parameterised problem class. An instance of the class is obtained for input to

the constraint solver by giving values for the parameters. Essence provides the same facility,

allowing the specification of problem classes. The refinement of problem specification and

parameter values is separated in the tool-chain, as shown in the figure. This allows the

user to solve multiple instances from the same problem class while only performing model

refinement once.

The SavileRow system accepts an Essence
′ model and corresponding parameter values.

It instantiates the model and transforms it into the input suitable for the Minion constraint

solver. SavileRow is able to produce output suitable for other constraint solvers, but this

thesis will use the Minion backend only. After Minion has solved the problem instance,

SavileRow translates the solution back into Essence
′. Conjure then translates the Essence

′

solution into a solution to the original Essence problem specification for presentation to the
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user.

Conjure can generate multiple models for a given problem. Selecting a good model

from the available candidates remains a challenging task.

4.2 Inside-Out: CONJURE’s Inner Workings

This section describes Conjure’s inner workings by explaining each step of its pipeline in

a subsection. Examples are used when necessary to describe how a certain step operates.

Essence hides CP modelling complexity very well, a concise problem specification often

produces quite large Essence
′ models. It is because of this reason why small Essence

specifications or fragments of larger specifications are used as examples.

4.2.1 Abstract Syntax Tree

Conjure does not store and manipulate Essence problem specifications in source form.

Inputs are parsed into an Abstract Syntax Tree (AST) representation and outputs are pretty-

printed to produce the human readable textual representation.

At the top level, an Essence specification is a list of statements. Some statements

introduce new declarations of decision variables or parameters, for this reason the order of

statements is important. Internally, Conjure stores a singly-linked list of statements and

each statement is stored in a data structure that is the AST of Essence. Conjure’s output –

CP models in Essence
′ – are also stored using the same representation. The only difference

between the two languages in this regard is the types of AST nodes they support.

Due to the complexity of both Essence and Essence
′ and to keep the internal repres-

entation as generic as possible Conjure uses a simple rose-tree for the AST. Each node is

tagged by a marker to differentiate kind of AST node. For example, the simple problem

specification given in Figure 4.2 declares 3 decision variables each having the identical

domain int(1..3) and two constraints. The comma-separated list of identifiers on line

3 is just syntax, writing that line is equivalent to writing 3 separate find statements and
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1 language Essence 1 . 3
2

3 f ind x , y , z : i n t ( 1 . . 3 )
4

5 such t h a t
6 y + 2 = z ,
7 a l l D i f f ( [ x , y , z ] )

Figure 4.2: A simple Essence specification

Declaration

Find

Name Domain

Identifier IntRange

"x" LiteralInt LiteralInt

1 3

Figure 4.3: AST for a declaration

replicating the domain 3 times. The AST representation for one of these declarations is

given in Figure 4.3. AST representations of the constraints are given in Figures 4.4 and 4.5.

The AST permits easy traversals to do various lookups and modifications to the stored

program. All operations described in the rest of this chapter work on the AST representation.
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Constraint

BinaryOp{=}

BinaryOp{+} Identifier

Identifier 2

"y"

"z"

Figure 4.4: AST for an all-different constraint

Moreover, Chapter 5 describes how a rule language is implemented using a generic matching

mechanism together with the parsing and pretty-printing functions to translate between

Essence syntax and the AST representation.

4.2.2 Type-checking

After parsing Essence input and creating an equivalent AST representation for it, Conjure

proceeds to type-checking. Essence is statically typed and type-incorrect input need to be

rejected before further processing.

Essence specification are a list of statements. The type-checking an Essence specification

is comprised of type-checking each statement in order. During this process, an symbol table

containing type information for each identifier is kept as state. The state is implemented

using a stack of identifier-type pairs; using a stack, entering a new binding scope can be
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Constraint

AllDifferent

LiteralMatrix

Identifier Identifier Identifier

"x" "y" "z"

Figure 4.5: AST for another constraint

implemented using a stack-push operation, and coming out of a binding scope can be

implemented using a stack-pop.

Algorithm 4.1: Type-checking an Essence problem specification

Algorithm tcEssence(statements)
symbolTable← initialiseStack
foreach s in statements do

symbolTable← tcStatement(s,symbolTable)
end
return

This internal representation is very generic, i.e. it lets us represent invalid ASTs as well

as valid ones. In particular, it can represent type-incorrect Essence expressions. Essence is

statically typed, and type-incorrect Essence input need to be rejected by Conjure. In order

to achieve this, Conjure employs a separate phase to type-check the Essence represented

using the AST (Algorithm 4.1). In Essence, the type of each domain is easily determined
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Algorithm 4.2: Type-checking an individual statement

Algorithm tcStatement(statement, symbolTable)
switch statement do

case Find(name,domain)
tcDeclaration(name, domain, symbolTable)

end
case Given(name,domain)

tcDeclaration(name, domain, symbolTable)
end
case LettingExpr(name,expression)

ty← tcExpression(expression)
symbolTable← push(〈name,ty〉,symbolTable)
return symbolTable

end
case LettingDomain(name,domain)

ty← tcDomain(domain)
symbolTable← push(〈name,ty〉,symbolTable)
return symbolTable

end
case Where(expression)

ty← tcExpression(expression, symbolTable)
if ty != bool then

reportError(statement)
end
return symbolTable

end
case SuchThat(expression)

ty← tcExpression(expression, symbolTable)
if ty != bool then

reportError(statement)
end
return symbolTable

end
case Objective(expression)

ty← tcExpression(expression, symbolTable)
if ty != int then

reportError(statement)
end
return symbolTable

end
endsw
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Algorithm 4.3: Type-checking declaration statements

Algorithm tcDeclaration(name, domain, symbolTable)
ty← tcDomain(domain)
symbolTable← push(〈name,ty〉,symbolTable)
return symbolTable

by removing attributes from a domain. Each decision variable or parameter declaration

will have a domain, and the type of the newly declared identifier will be that of its domain

(Algorithm 4.3). Expressions are built using predefined operators and typing rules for each

predefined operator is know; hence, the type of any expression can be calculated using these

typing rules (Algorithm 4.2). Each top level constraint has to be of type Boolean and the

objective expression has to be of type integer to be type-correct.

4.2.3 Input Validation

Input validation phase comes after type-checking. It validates the input by checking

attributes of abstract decision variables for inconsistencies and adding implicit instantiation

conditions if needed.

In Essence explicit instantiation conditions are given by where statements. A where

statement contains a boolean expression which is checked at instantiation time, and hence

cannot contain expressions that depend on the values of decision variables. In addition to

the explicit ones, a specification also imposes implicit instantiation conditions as follows:

• A declaration of the form “letting id be new type of size e” imposes the instan-

tiation condition that e ≥ 1

• Integer ranges used in matrix indices need to be non-empty. For example using the

range int(a..b) as a matrix index imposes the instantiation condition that a ≤ b.

• Use of annotations of certain forms imposes the instantiation condition e ≥ 0:

(size e), (maxSize e), (minSize e), (partSize e), (minPartSize e), (maxPartSize e),

(numParts e), (minNumParts e), (maxNumParts e), (minOccur e), (maxOccur e).
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• Constructing a set by giving each of its elements, imposes the instantiation condition

that each value is distinct.

• Constructing a function by giving each of its constituent mappings, imposes the

instantiation condition that each value is mapped to at most one other value.

• Similarly, constructing a partition by giving each of its parts, imposes the instantiation

condition that the parts are disjoint.

4.2.4 Representation selection for a single declaration

In Essence, a decision variable or a problem parameter is defined by giving it a name – a

unique identifier that is previously not used in the problem specification – and a domain. The

domain of either kind of declaration can either be concrete or abstract. Concrete domains are

domains which are also supported by Essence
′: bool, int, and matrix domains containing

elements of bools or ints. In Essence
′, matrix domains cannot contain other matrix

domains, but they can be multi-dimensional. Declarations with concrete domains can be

kept unchanged in Conjure’s output, thus they do not need to be represented in some other

way.

On the other hand, declarations with abstract domains cannot occur in Conjure’s

output, thus they need to be represented using simpler declarations. Representation

selection in Conjure takes in as argument an abstract domain and produces a list of

candidate representation options. Each option consists of three components: a name for

the representation, a new domain to be used instead of the original abstract domain and

optionally structural constraints to be posted.

Structural constraints are needed to make sure the replacement domain does not contain

values that the original abstract domain does not. For example, a function decision variable

between two integer domains can be represented using a 2-dimensional matrix of Boolean

variables. If no constraints are posted on this representation, values which are not valid

mathematical functions will be values of this domain. As an example, let us look at
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Figure 4.6 and Figure 4.7. Here, the decision variable f is represented using a 2-dimensional

matrix of Booleans, and a structural constraint is added. It is important to notice that the

replacement domain will contain values which are not valid mathematical functions without

this constraint.

Structural constraints are also helpful when representing domains with additional

attributes on them. In the previous example, f did not have any attributes, so the function

variable could be a partial function. However, Essence lets us decorate domains with

additional information via attributes. In such cases, structural constraints are used to refine

the replacement domain to only contain values in accordance with the attributes. Figure 4.8

lists a function domain with a total attribute, and Figure 4.9 is the refinement of it. Notice

that the refinement of the same function domain without the attribute used the exacts same

replacement domain, however, the structural constraint is different. The structural constraint

without total only made sure that there is at most 1 mapping for each value in the range

over which the function is defined; whereas with the total keyword, there has to be exactly

1 mapping for each value.

Finally, structural constraints are used to break symmetry that is introduced by represent-

ing a domain. As an example, let us look at Figure 4.10 and Figure 4.11. Here, the abstract

decision variable s is represented using a 1-dimensional matrix of 4 integers. In order to

preserve the meaning of the original problem specification, an all-different constraint has

to be posted as a structural constraint, since mathematical sets cannot contain duplicate

items. However, if we use an all-different constraint, we will be introducing modelling

symmetry. Instead of the all-different, Conjure generates structural constraints to make sure

values of s_Explicit are all-increasing. This breaks the symmetry that is introduced due to

modelling. See 8 for more details on how symmetry breaking works in Conjure.

Posting a structural constraint rules out such values from the domain.
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1 language Essence 1 . 3
2

3 f ind f : func t ion i n t ( 1 . . 3 ) −−> i n t ( 1 . . 3 )

Figure 4.6: A simple Essence problem specification containing only one abstract decision
variable, f, with a function domain.

1 language Essence 1 . 3
2

3 f ind f_Matrix2D : matrix indexed by [ i n t ( 1 . . 3 ) , i n t ( 1 . . 3 ) ] of bool
4

5 such t h a t
6 f o r A l l i : i n t ( 1 . . 3 ) .
7 (sum j : i n t ( 1 . . 3 ) . t o I n t ( f_Matrix2D [ i , j ] ) ) <= 1

Figure 4.7: A representation option for the decision variable listed in Figure 4.6

1 language Essence 1 . 3
2

3 f ind f : func t ion ( t o t a l ) i n t ( 1 . . 3 ) −−> i n t ( 1 . . 3 )

Figure 4.8: A variation of Figure 4.6 with an additional attribute on the domain.

1 language Essence 1 . 3
2

3 f ind f_Matrix2D : matrix indexed by [ i n t ( 1 . . 3 ) , i n t ( 1 . . 3 ) ] of bool
4

5 such t h a t
6 f o r A l l i : i n t ( 1 . . 3 ) .
7 (sum j : i n t ( 1 . . 3 ) . t o I n t ( f_Matrix2D [ i , j ] ) ) = 1

Figure 4.9: A representation option for the decision variable listed in Figure 4.8.

1 language Essence 1 . 3
2

3 f ind s : s e t ( s i z e 4 ) of i n t ( 0 . . 9 )

Figure 4.10: A simple Essence problem specification containing only one abstract decision
variable, s, with a set domain.
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1 language Essence 1 . 3
2

3 f ind s _ E x p l i c i t : matrix indexed by [ i n t ( 1 . . 4 ) ] of i n t ( 1 . . 9 )
4

5 such t h a t
6 f o r A l l i : i n t ( 1 . . 3 ) . s _ E x p l i c i t [ i ] < s _ E x p l i c i t [ i +1]

Figure 4.11: A representation option for Figure 4.10

4.2.5 Identifier Regions

Each identifier referring to a decision variable or a parameter declaration can be annotated

with region information.

An identifier, and the declaration referenced by the identifier, will be represented in the

same way by Conjure.

However, the same declaration can be represented differently if they are in different

regions.

Motivation: To enable the use of different representations of a single decision variable

in the same CP model. If a model uses multiple representations of a single decision variable,

channelling constraints are generated automatically by Conjure.

Also to have a mechanism enabling finer grained control of how many different rep-

resentations of a single decision variable can be used in a single model. Assigning related

occurrences of the same decision variable the same region will force Conjure to use the

same representation for all of those.

The most variation will come when each occurrence is assigned a unique region. The

goal of Conjure at this stage is to systematically explore a diverse space of models, so it

indeed assigns a separate region to each identifier.

let us extend the specification from Figure 4.6 with two constraints. In Figure 4.12, the

first constraint uses function application to post the condition that the value 1 is mapped to

the value 3. The second constraint posts the condition that the cardinality of the set of values

mapped to the value 2 should be at least 1. Namely, in an assignment to f, there needs to
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1 language Essence 1 . 3
2

3 f ind f : func t ion ( t o t a l ) i n t ( 1 . . 3 ) −−> i n t ( 1 . . 3 )
4

5 such t h a t
6 f ( 1 ) = 3 ,
7 |inverse ( f , 2 ) | >= 1

Figure 4.12: An Essence problem specification, which uses f twice.

be at least one value that is mapped to 2. The decision variable f can be represented in

multiple ways by Conjure. The two obvious choices are using a one-dimensional matrix of

three values or using a two-dimensional matrix of boolean values. Conjure automatically

puts the two f’s into separate regions, so it can choose different representations for each

occurrence of the decision variable f in the specification.

4.2.6 Representation selection for a complete ESSENCE specification

Conjure selects a representation for each identifier that is referring to an abstract declaration.

It can select different representations for different occurrences of the same identifier. If

multiple representations are selected for the same declaration, Conjure generates an equality

constraint between the two different representations; such constraints are called channelling

constraints. The equality constraint is refined in the same way to other constraints in the

problem specification, it is not handled specially.

A representation for an abstract declaration might use other abstract domains. An

obvious example of this phenomena is nested domains, a set of τ where τ is an abstract

domain will generate a matrix of τ domains. This domain will need further representation.

Another example is when an abstract domain is represented using another abstract domain.

For example function domains can be represented using relation domains with additional

constraints on them.

Figure 4.13, gives an example problem specification where the two occurrences of the

decision variable are annotated with different representation decisions. In addition to
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1 language Essence 1 . 3
2

3 f ind f : func t ion ( t o t a l ) i n t ( 1 . . 3 ) −−> i n t ( 1 . . 3 )
4 f ind f_Matrix1D : matrix indexed by [ i n t ( 1 . . 3 ) ] of i n t ( 1 . . 3 )
5 f ind f_Matrix2D : matrix indexed by [ i n t ( 1 . . 3 ) , i n t ( 1 . . 3 ) ] of bool
6

7 such t h a t
8 f #Matrix1D ( 1 ) = 3 ,
9 |inverse ( f #Matrix2D , 2 ) | >= 1 ,

10 // s t r u c t u r a l c o n s t r a i n t s f o r f_Matrix1D
11 // s t r u c t u r a l c o n s t r a i n t s f o r f_Matrix2D
12 f #Matrix1D = f #Matrix2D // channel l ing c o n s t r a i n t

Figure 4.13: Figure 4.12 annotated with representation decisions.

annotating each occurrence of f, Conjure also generates the new declarations for the

selected representations. Structural constraints are generated if any are needed for the new

representation and an equality constraint is added between the two representations of f.

4.2.7 Expression refinement

After a representation is chosen for each abstract declaration, expressions containing ref-

erences to these declarations need to be refined. Such expressions are called abstract

expressions.

Expression refinement is the process of replacing an expression with an equivalent

expression. It is commonly used in Conjure to replace abstract expressions with concrete

expressions. It typically takes multiple replacements to reach a final and fully concrete

version of the original expression.

Abstract expressions can be contained in constraint statements, the objective statement if

there is one, expressions on the right-hand side of letting statements, and expressions in

where statements.

Conjure contains a collection of transformations which work on fragments of Essence

expressions. These transformations do not necessarily operate on complete constraint

expressions, they can operate on any sub-expression contained within larger expressions.
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1 language Essence 1 . 3
2

3 f ind f : func t ion ( t o t a l ) i n t ( 1 . . 3 ) −−> i n t ( 1 . . 3 )
4 f ind f_Matrix1D : matrix indexed by [ i n t ( 1 . . 3 ) ] of i n t ( 1 . . 3 )
5

6 such t h a t
7 f #Matrix1D ( 1 ) = 3

Figure 4.14: Showing the operation of expression refinement on parts of Figure 4.13.

For example, in an expression like a union b = c – where a, b and c are sets – an expression

refinement transformation can rewrite the left-hand side without touching the rest of the

expression at all.

Transformations either match a given expression or they do not. If a transformation

matches an expression, it returns a rewrite of the original expression. Moreover, multiple

transformations can match a single expression. When multiple transformations are applic-

able, this means there are multiple ways to refine the expression at hand. Conjure forks at

this point and generates an output model using each option in turn.

Figure 4.14 shows the operation of expression refinement on parts of an Essence

specification. On line 7, f#Matrix1D(1) is an abstract expression. It contains a reference to

f, an abstract decision variable declaration. It uses the function-application syntax to refer

to the value that is mapped to by value 1.

Conjure’s expression refinement phase will find only one applicable transformation in

this case, and that transformation will replace the function-application operator to a simple

matrix dereference operator. It will also change the parameter of the new operator, instead

of f annotated with representation information, it will use the concrete refinement of f,

f_Matrix1D. The result of applying this transformation will produce f_Matrix1D[1] = 3

as the final constraint. At this point the abstract decision variable f is not being referred

to at any point in the problem specification. When an abstract declaration is not used in

the problem specification, it is said to be fully refined and can safely be removed from the

specification (See Figure 4.15).
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1 language Essence 1 . 3
2

3 f ind f_Matrix1D : matrix indexed by [ i n t ( 1 . . 3 ) ] of i n t ( 1 . . 3 )
4

5 such t h a t
6 f_Matrix1D [ 1 ] = 3

Figure 4.15: After refining the expression and removing the abstract declaration of Fig-
ure 4.14.

4.2.8 Partial evaluator

Conventional compilers for programming languages use partial evaluation for program

optimisation. They use statically known data to reduce parts of the program at compile time.

This process potentially makes the program run faster while producing identical results.

Partial evaluation has a much bigger potential in the context of CP modelling languages.

Eliminating unnecessary constraints and decision variables can drastically improve the

solving time of a CP model. The potential gain from partial evaluation gets larger directly

proportional to the level of abstraction of the CP modelling language. It is an indispensable

tool when operating on a problem specification language with abstract domains and

powerful operators: eliminating one decision variable with a function domain eliminates

multiple decision variables and constraints from the generated model.

For example, a problem specification like the one in Figure 4.16 contains a top level

constraint which is trivially true. Conjure will transform this constraint into x = x first by

eliminating the union with an empty set, and then remove the constraint from the model

altogether.

The partial evaluator is also used by the rule language of Conjure, which is described in

Chapter 5.

4.2.9 Enumerated types and Unnamed types

Essence offers enumerated types and unnamed types to use during problem specification.

Enumerated types are finite types and their members unique identifiers explicitly listed
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1 language Essence 1 . 3
2

3 f ind x : s e t of τ
4 such t h a t
5 x union { } = x ,
6 . . .

Figure 4.16: Partial evaluation can remove the constraint at line 5.

by the user when defining the type. When enumerated types are not provided by a

modelling system, integers are generally used to represent enumerations. This encoding

requires the user to maintain the mapping between items and integers externally to the

system. In addition to helping reduce this burden from the user, supporting enumerated

types internally comes with an added benefit: Enumerated types do not support all operators

of integers. Most importantly, they do not support arithmetic operators, and defining a

decision variable to have an enumerated type as a domain limits the user from making

mistakes such as using the decision variable in a type-incorrect way. Enumerated types

support equality and inequality checks. They also support checking for ordering using the

common operators: <, <=, >, and >=. Element order follows declaration order.

Unnamed types, similar to enumerated types, are generally modelled using integers in

most CP modelling languages. Essence offers unnamed types to use when members of a

type are not named, i.e. they are freely interchangeable. They let the user avoid introducing

unnecessary symmetry to the problem specification. For example, golfers in the Social

Golfers Problem are interchangeable, the problem does not post any special constraints for

specific golfers. Using unnamed types, Conjure has access to the information that golfers

are interchangeable. Unnamed types only support equality and inequality checks.

Refinement of both enumerated types and unnamed types are simply mapping them to

integers. Conjure uses a finite integer domain containing the correct number of elements to

model enumerated types and unnamed types.
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4.3 Summary

This chapter described two main points. First is describing how Conjure fits into the big

picture: where does it fit as a part of a larger tool-chain. Second is the description of its

internal design and architecture: the internal representation, parsing, type checking, the

partial evaluator, and the two kinds of modelling transformations and how they are applied.

In combination with a description of the rule language, which is the subject of the next

chapter, these two chapters describe the core ideas in Conjure.
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Chapter 5

The Rule Language

This chapter explains the domain-specific rewrite rule language of Conjure. It starts by

giving motivation for the existence of such a language in Section 5.1. Section 5.2 gives an

overview of the different kinds of rules Conjure implements. The overall structure of each

kind of rule is given in Section 5.3. In the rest of the chapter, features of the rule language

are described. Section 5.4 describes a crucial part of the rule language, pattern matching.

Section 5.5 defines many features and operators of the rule language. Section 5.6 discusses

a system called bubbling that is used mostly when a rule needs to create auxiliary decision

variables and Section 5.7 defines how unused names are generated during rule application

and how such names can be requested in the definition of a rule.

5.1 Motivation for a rewrite rule language

Conjure converts problem specifications written in Essence into CP models written in

Essence
′. In order to do so, it needs to represent abstract decision variables and parameters

of an Essence problem specification using concrete decision variables and parameters in an

Essence
′ model. Namely, Essence domains need to be transformed into Essence

′ domains,

and Essence expressions need to be transformed into Essence
′ expressions.

The main duty of Conjure is applying transformations. It contains generic mechan-

isms to apply certain kinds of transformations to the AST representation of the problem
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specification it is working on. There are benefits to separating the definition and application

of transformations. One benefit is that Conjure knows exactly what each transformation

can do and which parts of the AST it can modify. Another benefit is that transformations

themselves do not have to implement a specific tree-walking mechanism, Conjure can reuse

the generic tree walking mechanism for each transformation.

Conjure is implemented using the Haskell[Mar10] programming language. Therefore,

the easiest way of defining transformations would be to use Haskell. In such a setting, trans-

formations would merely be Haskell functions, accepting candidate expression fragments

as arguments and producing replacement expressions if a transformation is applicable. This

way, rules would directly be written in terms of the internal representation, the AST, of

Essence. There are both advantages and disadvantages of using Haskell to implement

transformations in Conjure. On the plus side: we would be reusing a lot of existing infra-

structure from the Haskell programming language, application of transformations would

be easier since they would be simple Haskell functions written in terms of the in-memory

representation. However, there are also disadvantages of using Haskell. Firstly, rules will

have to be defined in terms of the in-memory representation. This is an advantage when

applying rules, but a disadvantage when defining them because it creates a very tight and

fragile coupling between how the internal data structures are defined and rule definitions.

It also creates a higher barrier to entry, one needs to be familiar with Haskell and the actual

implementation of Conjure to be able to write new transformations. Furthermore, and

maybe most importantly, definitions of transformations quickly become very verbose when

a general purpose programming language is used.

Transformations in Conjure are implemented as rewrite rules. These rewrite rules are

written in a domain-specific rewrite rule language, and they use the same syntax as Essence

and Essence
′ to a large extent. The rewrite rule language adds a number of new constructs;

these are described in Section 5.5.

There are many advantages of using a domain-specific rewrite rule language to encode

modelling transformations. The rule language only contains those features that we need for
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the purpose and nothing more. Thanks to this limited set of language constructs and its

resemblance to Essence, we hope using the rewrite rule will have less cognitive overhead.

The rule language also makes it easier to extend Conjure with new rules. Adding a new

rule does not require recompiling Conjure and it does not require writing any any Haskell

code. Probably most importantly, rules written in the rule language are decoupled from

the internal representation of Essence and Essence
′. This makes it easier to maintain

rules, changes to the internal data structures of Conjure will require no change to rules

themselves.

Using a domain-specific rewrite rule language also has a few disadvantages. Firstly,

the rules are interpreted rather than compiled. Compiled rules are likely to be faster; yet

we chose to use a rule language because conciseness and ease of extensibility of rules

were more important to us. Secondly, the rule language is not Turing-complete. Some

transformations are harder, if not impossible, to write in the rule language in comparison

to a Turing-complete programming language. This disadvantage does not seem to be a

huge problem in practice, since we can always extend the rewrite rule language with new

language constructs.

It is also important to note that having a domain-specific rewrite rule language does

not mean Haskell cannot be used to define any transformations. Some transformations

can be defined using Haskell, especially when defining the same transformation using

the rule language is cumbersome or too slow. In practice, Conjure’s partial evaluator is

implemented using transformations defined in Haskell because of evaluation of Essence

expressions happens very often and is desired to be fast.

5.2 Kinds of rules

Conjure contains two main kinds of rules: representation selection and expression refinement

rules. These two kinds of rules directly capture two kinds of modelling decisions human

modellers often make when they model a problem using CP. Broadly speaking, represent-
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Rules Representation selection

Expression refinement Horizontal

Vertical

Figure 5.1: Hierarchy of different kinds of rules in Conjure.

ation selection rules capture the notion of viewpoint selection. They are used to encode

concrete representation options for abstract decision variables of Essence. Expression refine-

ment rules capture the notion of stating problem constraints using the selected viewpoint.

Each constraint in the problem specification has to be stated in a different way depending

on the selected viewpoint. Also note that a single constraint in Essence can be modelled in

multiple different ways even after the viewpoints of all decision variables are fixed.

Representation selection rules take as input a domain. If a rule is applicable, it produces

3 outputs. First output is a replacement domain to be used to model or represent the input

domain. Second output is a structural constraint to be posted after rule application to

maintain invariants of the input domain. Third output is a name for the representation.

This name will be referred to later when applying expression refinement rules.

Expression refinement rules take as input an expression, and produce as output a

replacement expression. They are used to model or refine constraint expression and the

objective expression. Essence constraints can be seen as abstract specification rather than

actual constraints. They are refined to actual constraints, once viewpoints are chosen for

each decision variable involved in the abstract specification of the constraint.

Expression refinement rules are further divided into two subcategories: horizontal and

vertical expression refinement rules. Horizontal rules are used mostly to provide sensible
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default refinements to Essence expressions in terms of other Essence expressions. They do

not change the level of abstractness of an expression, i.e., they never change representations

of any of the decision variables involved in the expression. On the other hand, vertical rules

do change the representations of decision variables involved in expressions. They typically

check the name of the representation for a decision variable and produce refinements

depending on the representation selection.

An important point about expression refinement rules is the level of granularity they

operate at. They do not transform whole constraints, rather they can transform any

expression fragment. For example, an Essence expression like a union b can be refined

independent of the constraint it occurs in.

The complete hierarchy of the different kinds of rules in Conjure is given in Figure 5.1.

5.3 Structure of a rule

5.3.1 Representation selection rules

A representation selection rule works on a domain and produces a concrete representation

option for a decision variable or problem parameter with that domain.

Representation selection rules are composed of a preamble and a number of cases. The

preamble contains the name of the rule, the output domain, and other common parts of the

cases if there are any. Each case contains a domain pattern, optionally structural constraints,

local guards, and local name bindings. Cases are separated by the *** character sequence.

When applying a rule, each case is tried from top to bottom and the first matching case

is applied. If one of the cases is applicable the whole rule is said to be applicable; and if

none of the cases is applicable the whole rule is not applicable.

The syntax for each case follows the syntax given in Figure 5.2. The domain-pattern is

used for pattern matching on the input domain. letting statements are used to introduce

local bindings, and where statements are used to introduce guards. A rule is only applicable

if all its guards can be reduced to true.
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∗∗∗ domain−pat tern
; s t r u c t u r a l−c o n s t r a i n t s
where . . .
l e t t i n g . . .

Figure 5.2: The syntax for a case of a representation selection rule.

; representa t ion−name
; replacement−domain
; s t r u c t u r a l−c o n s t r a i n t s

where . . .
l e t t i n g . . .

Figure 5.3: The syntax for a complete representation selection rule.

The syntax for a complete representation selection rule is given in Figure 5.3. The where

and letting statements that are in the preamble are shared amongst all cases. They are

mostly provided to reduce repetition. The structural constraints that are in the preamble are

also posted in addition to the structural constraints that are posted by a case.

5.3.2 Expression refinement rules

The syntax for an expression refinement rule is given in Figure 5.4 Expression refinement

rules replace expression by other expressions, and their syntax follows this. The left-hand

side of the ; sign is an expression-pattern. The input expression is pattern matched against

this pattern (see. Section 5.4). where statements are checked in a similar fashion to those in

representation selection rules. Each where statement needs to be reduced to the value true

for a rule to be applicable. letting statements are used to introduce local bindings. find

statements are specific to expression refinement rules, they are used to introduce auxiliary

decision variables to the model. Details about how this mechanism works are given in

Section 5.7 and Section 5.6.

Expression refinement rules optionally carry information about their precedence level.

Although Conjure is designed to explore different models by applying all applicable rules,

the rule precedence mechanism can be used to give Conjure an indication as to which rules
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[ precedence l e v e l ]
expression−pat tern ; replacement−express ion

where . . .
l e t t i n g . . .
f ind . . .

Figure 5.4: The syntax for an expression refinement rule.

to favour. Conjure will choose to apply rules at a lower precedence level in cases when

multiple rules are applicable to a single expression fragment. Precedence levels are intended

to be used when a specific rule is considered to be dominating a more general rule.

5.4 Pattern matching

The rule language makes extensive use of pattern matching. This section describes pattern

matching as used by the rule language of Conjure.

Pattern matching is defined on two arguments: a pattern argument and an actual

argument. A pattern is an Essence domain or expression, additionally equipped with

meta-variables. There are two kinds of patterns, a domain pattern and an expression pattern.

These do not need to be identified manually, Conjure will infer the kind of a pattern

depending on context.

Pattern matching takes a pattern and an argument. It can be used to write conditionals

depending on the shape of the argument with respect to the pattern. It can also be used to

pull out fragments of the argument and bind them to meta-variables, ready for later use.

5.4.1 Meta-variables

The rule language shares and extends the Abstract Syntax Tree (see Section 4.2.1) of Essence.

In particular, it adds meta-variables. Meta-variables are part of the rewrite rule language

and they stand for elements of the object language, Essence. The rule language uses an

ampersand symbol as a one letter prefix to any identifier to indicate a meta-variable.
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In a pattern, meta-variables are used to denote parts of a domain or an expression. If

pattern matching succeeds, meta-variables will be instantiated by Conjure to corresponding

parts of the actual argument of pattern matching.

Once a pattern match succeeds and a value is assigned for each meta-variable, the

meta-variables can then be used elsewhere in a rule. Conjure will replace any meta-variable

with its value assigned by pattern-matching when applying a rule.

5.4.2 Semantics of pattern matching

Pattern matching in Conjure works by comparing AST representations of the pattern and

the actual argument. The simplest pattern is a meta-variable by itself, and this pattern

would match any actual argument. A compound pattern is represented by an Essence AST.

In the case of compound patterns, the shape of the pattern tree and the shape of the actual

argument tree are compared. If they both have the same node type and same number of

children, both trees are said to have the same shape at this level. Pattern matching proceeds

to recursively check each child of the pattern to the corresponding child of the argument.

5.4.3 An alternative

An alternative to pattern matching in Conjure’s rule language would be to provide a

collection of operators which check the shape of an Essence domain or expression. These

operators would then be used in the where statements to conditionally apply rules. Moreover,

the rule language would also need to provide a collection of operators to pull out fragments

of an Essence domain or expression. These operators would then be used in the local

letting statements to assign values to meta-variables.

Such an alternative would have been more cumbersome, would require the addition of

a large number of operators to the rule language, and would slow down rule application.

Pattern matching using a syntax very close to the syntax of Essence is chosen instead.
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Algorithm 5.1: Pattern matching in Conjure’s rule language

Algorithm patternMatch(pattern, argument)
switch pattern do

case MetaVariable(name)
bind(name, argument)

end
case Tree(label1,children1)

switch argument do
case Tree(label2,children2)

if sameLabel(label1,label2) AND sameLength(children1,children2) then
for (p,a)← zip children1 children2 do

patternMatch(p,a)
end

else
reportError(pattern,argument)

end
end
otherwise

reportError(pattern,argument)
end

endsw
end
otherwise

reportError(pattern,argument)
end

endsw

5.5 Rule language constructs

The rule language provides a small number of language constructs on top of Essence. The

additions are mostly in the form of new operators. These operators have special meaning

and are handled specifically by Conjure. where, letting, and find statements are taken

from Essence and given new meanings.

5.5.1 Guarded rewriting: where statements

Essence uses where statements for validity checking of instance data. The rule language

reuses where statements as syntax for guards. Guards are used in most rewriting system to

limit the applicability of a rule. A rule is only applied if its guards can be evaluated to true.
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5.5.2 Guarding operators: has*

These operators are commonly used in the where statements of a rule.

All three operators listed in this section evaluate to a boolean value. They can be freely

used in conjunction with existing Essence operators. For example, a where statement in a

rule can contain a disjunction (\/) of two expressions both built using the rule language

operator hasRepresentation.

5.5.2.1 hasDomain

The operator hasDomain takes two arguments. Its first argument is an expression. Its second

argument is a domain pattern. The second argument gives the expected domain for the first

argument. hasDomain is used in infix form.

An expression of the form &x hasDomain s̀et (size &n) of &tau` will be evaluated

to true if the expression bound to the meta-variable &x has a domain that matches the

pattern on the right. In order to match this pattern, the domain of &x has to be a set domain,

with a known cardinality. It also needs to not have any other attributes. Domain patterns are

described in more detail in Section 5.4. In addition to evaluating to true, such an expression

will also introduce values for meta-variables &n and &tau. &n will be bound to an integer

expression, whereas &tau will be bound to a domain. The same expression will be evaluated

to false if the domain of &x cannot be successfully pattern matched to the domain on the

right-hand side. In this case, the meta-variables &x and &tau will not be bound to any value.

5.5.2.2 hasType

The operator hasType is similar to hasDomain. It also takes two arguments, and is used

in infix form. Its first argument is an expression, its second argument is a type pattern.

In Essence, every expression has a type. The type of an expression can be calculated by

deleting annotations from its domain.
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For example, if a decision variable has the domain set (size 3) of int(0..9), its

type will be set of int.

5.5.2.3 hasRepresentation

The operator hasRepresentation is only used in vertical expression refinement rules. Its

first argument is an expression, and its second argument is an identifier.

An expression of the form &x hasRepresentation Matrix1D will be evaluated to true

if &x is bound to an abstract decision variable or problem parameter that is being represented

using the Matrix1D representation. It will be evaluated to false otherwise.

5.5.3 refn

Depending on context, the operator refn can be seen as a shorthand for ‘refinement’ or

‘refinement of’.

In a representation selection rule, refn does not take any arguments. It is merely an

identifier which is handled specifically during rule application. Representation selection

rules are written in terms of domains and not full declarations of decision variables or

problem parameters. When applying a rule, Conjure projects the domain out of a declara-

tion statement and uses it for pattern matching. Representation selection rules also do not

output full declarations by themselves. They output a replacement domain instead, and

Conjure is responsible to generate a new declaration together with a new name using the

generated domain.

This arrangement limits the ability to refer to the generated decision variable within

the representation selection rule itself. Because the new decision variable is not even give

a name yet. The operator refn is used to fill this gap, it can be used in a representation

selection rule to refer to the decision variable which will be generated as a result of applying

the rule. For example, if a rule outputs a matrix domain and the rule wants to post an

allDiff constraint on this matrix the syntax to use is allDiff(refn).
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The same refn keyword is used in expression refinement rule to have a very similar

meaning. There is one important difference though: in expression refinement rules, refn

is actually an operator which takes a single argument. It takes as argument an abstract

decision variable or problem parameter and returns the refinement of the argument. In order

to do this, the argument has to have a representation selected for it in the representations

selection phase. Typically, a rule will use a hasRepresentation operator in a where clause

to check which representation something has, before calling refn on it.

5.5.4 domSize

The operator domSize is a shorthand for ‘domain size’. It takes as input an Essence expression

and returns an integer expression representing the size of the domain of its argument. For

constant expressions, it returns 1.

For example, domSize(int(1..9)) is 9, domSize(set (size 2) of int(1..9)) is 9 **

2 which is equal to 81.

5.5.5 Deep replace

In rules, sometimes all occurrences of a certain subexpression needs to be replaced by some

other subexpression. Conjure provides a way to accomplish this in the rule language: the

deep-replace operator.

The syntax for deep-replace is demonstrated by example: &body i –> m[i] . In this

example, &body is a meta-variable, i and m can be any expression. The effect of using the

deep-replace operator is replacing all occurrences of i in &body with m[i].

For example if &body is (i + 3) ** j, after deep-replace if the result will be (m[i] +

3) ** j.
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5.6 Locality of rules and ‘Bubbling’

In Essence, constraints are top level boolean expressions. Top level boolean expressions are

very nice to work with, attaching additional conditions to an expression as part of a rewrite

is as simple as using a conjunction operator and introducing auxiliary variables is as simple

as adding top level decision variables to the original model. Boolean expressions nested

inside other boolean expressions are a little bit harder to work with. Posting additional

conditions during a rewrite is equally easy to, the conjunction operator can still be used.

However, when introducing auxiliary variables special machinery is needed. When the

boolean expression is nested inside other expressions but is not inside a quantified context

the auxiliary variable can freely be added to the top level. When the boolean expression

is nested inside a quantified context, an array of auxiliary variables needs to be created

for each iteration of the quantified expression. Furthermore, the trickiest case is working

with non-boolean expressions. For non-boolean expressions, posting additional conditions

cannot be achieved using the conjunction operator. Instead, the condition needs to be posted

to the closest boolean context.

Bubbling is a technique developed to overcome this specific problem. Using bubbling,

rule authors do not need to think about the type or nesting of the input expression for a

rule. A rule indicates additional conditions and decision variables by putting them inside a

bubble. Conjure automatically handles the transfer of the constraints and decision variables

in a bubble.

The definition of rules in Conjure is very local. An expression refinement rule does not

have access to parent of an expression. This means, an expression refinement rule can do one

thing: pattern match on an expression fragment and replace it with another. Representation

selection rules are not much different either: they can only match the domain of a top level

decision variable and produce a replacement. (In addition, representation selection rules

can also post top level constraints in the form of structural constraints.)

This simplification is helpful because it simplifies the implementation of rule application.
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Moreover it makes reasoning about rule application simpler.

On the other hand, this restriction also limits the abilities of the rule language. There

are many valid reasons for a rule to introduce new decision variables, or post additional

constraints outside the scope of the expression fragment it is working on.

Posting additional constraints is as easy as producing a conjunction of the actual and

the additional constraint for boolean expressions. For any other expression type, it is not so

easy.

The prototype implementation discussed in [Fri+05b] operated by matching against

and rewriting complete constraints after flattening all expressions by introducing auxiliary

variables and further constraints. However, such an approach has a number of drawbacks.

It may not be scalable in general as we may possibly have a huge number of constraint

types that look very similar but slightly different (such as: x subseteq (a union b) and x

supseteq (a union b)). Furthermore, a large number of rewrite rules may be needed, one

for each constraint type. Finally, the flattening process may introduce a large number of

unnecessary auxiliary variables and changes the structure of our constraints for which we

may have better rewrite rules that exploit that structure.

Using an approach called bubbling, we overcome these drawbacks by allowing the rules

to match and rewrite expressions within a constraint rather than (necessarily) the whole

constraint. This allows us to accomplish three things. First, we can refine a greater proportion

of the Essence language using fewer rules. Second, unlike the prototype in [Fri+05b], we no

longer need to flatten a specification prior to refinement, avoiding introducing unnecessary

auxiliary variables. Finally, we may have optimised rewrite rules for constraints with specific

structure. For instance, consider the constraint (a union b) subseteq c. If we flatten it,

we would have x subseteq c /\ x = a union b which introduces an auxiliary variable

and requires refining unnecessarily a set equality constraint. Using the bubbling approach,

in addition to this refinement, we may rewrite this into a conjunction of two subseteq

constraints, namely a subseteq c /\ b subseteq c, by having a dedicated rewrite rule

which reasons about the structure of this type of constraint.
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There is a subtle problem arising when we match an expression fragment and rewrite it

to an equivalent expression fragment. The rewrite might introduce extra constraints and

auxiliary variables.

For instance, consider the following Essence specification:

1 given lb , ub , n ,m, k : i n t

2 f ind t : s e t ( s i z e n ) of i n t ( lb . . ub )

3 f ind A : s e t ( s i z e n ) s e t ( s i z e m) of i n t ( lb . . ub )

4 such t h a t

5 f o r A l l s in A . (max( s ) − max( t ) = k ) −> k in s

The rewrite rule for the set max operator (max(s)) needs to introduce an auxiliary

variable, say max_s, along with constraints that enforce that max_s is the maximum element

in set s. We refer to these extra constraints as helper constraints.

We equip our rewrite rules with an extra operator “{ x @ b }” which attaches a “bubble”

b containing declaration of auxiliary variables and helper constraints any expression, in this

case x. For example, our rewrite rule for the set max operator is as follows:

1 max( &s ) ; { aux

2 @ find aux : &tau

3 such t h a t

4 f o r A l l i in &s . i <= aux ,

5 aux in &s

6 }

7 where &s hasDomain ‘ s e t ( . . ) of &tau ‘

If we apply this rule of the above example which contains two set max operators, we

end up with the following resulting expression:

1 f o r A l l s in A .

2 ( { max_s @ bubble_s } − max( t ) = k ) −> k in s
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1 f o r A l l s in A .

2 ( { max_s @ bubble_s } − { max_t @ bubble_t } = k ) −> k in s

As we can see, the intermediate expression is not a valid Essence expression one yet. In

fact, we need to move the bubbles to their correct positions. Conjure contains built-in rules

to move constraints in bubbles upwards until they reach a boolean context and then attach

the constraints using a conjunction to the closest boolean context. The process of moving

constraints upwards is described below. Auxiliary decision variable declarations that are in

bubbles are given a unique name automatically by Conjure and introduced at the top level.

Also if the bubble happens to be in the body of a quantified expression, a matrix of auxiliary

variables is created automatically, and the constraints in the bubble are automatically lifted

to work on a the corresponding index of the matrix.

Bubbling up happens one level at a time. If a bubble is attached to a boolean expression,

it is turned into a conjunction and left in place. Otherwise, for an expression e if the

immediate children of e have bubbles attached to them, the constraints in the bubble are

collected and attached to e. This operation is performed recursively from the bottom-up

until all constraints in bubbles are converted into conjunctions.

In our running example, these are the results of successively applying the bubbling-up

operation.

1 f o r A l l s in A .

2 ( { ( max_s − max_t ) @ ( bubble_s /\ bubble_t ) } ) = k ) −> k in s

1 f o r A l l s in A .

2 ( { ( max_s − max_t = k ) @ ( bubble_s /\ bubble_t ) } ) −> k in s

At this point, the bubbles are attached to a boolean expression and they can safely be

converted to a conjunction “/\” resulting in the following valid Essence expression:
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1 f o r A l l s in A .

2 ( { ( max_s − max_t = k ) /\ ( bubble_s /\ bubble_t ) } ) −> k in s

Skolemisation as an alternative to Bubbling

Some transformation rules in Conjure are already local: they match a single expression

fragment and replace it with another. A simple example of this is simplification rules like

replacing ‘true -> &a’ with ‘&a’. Other rules need to modify some global state, in the case

of Conjure this happens in the form of the need to introduce an auxiliary decision variable.

Bubbling is essentially an abstraction enabling rules to introduce new auxiliary decision

variables and post constraints in non-relational constraints. These are put inside a bubble

within the rule and are placed at the correct place by Conjure.

Skolemisation[Hod97] is commonly performed by automated theorem provers to remove

existential quantifiers from logic statements and replace them with top level decision

variables. The general issue of applying a skolemisation transformation to CP models is

recently studied in the literature[Jef+10]. This paper shows that depending on the solver

implementation using existential quantifiers can actually be better than introducing auxiliary

variables. However, in general the introduction of auxiliary variables can improve constraint

propagation[Smi06a].

The decision of whether to convert top level decision variables into existential quantifica-

tion or turning existential quantification into top level decision variables depends on many

factors, and this decision is orthogonal to the technique presented here. Bubbling can be

viewed as a similar technique to skolemisation only because the output of both techniques

is the creation of new decision variables.

5.7 Generating unused names

Transformations in Conjure need to be able to generate unused names during their applica-

tion. However, they do not know about the whole context of rule application, so abstracting
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this notion and providing functionality to produce unused names automatically will make

the life of a rule author easier.

Rules need new name generation in two places. First is quantified expressions, which

contain a quantified variable whose name needs to be unique in this context. Second is

when a rule introduces auxiliary decision variables using a find statement.

In both of these cases, the rule author needs to use a unique name in the context of the

rule, and Conjure guarantees to replace it with a unique name in the context of the model

at the time of rule application.

5.8 Summary

This section defined the domain specific rewrite rule language used in Conjure. It gives

motivation for the existence of such a language, defines the kinds of rules Conjure has, and

describes the features of the rule language. The next section will give a selection of rules to

demonstrate how the complete system is put together.
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Chapter 6

The Rules of CONJURE

This chapter describes the rules of Conjure. It starts describing the mechanism used to test

the correctness of Conjure’s rules, followed by a listing of the representation selection rules

and vertical rules for each representation and for each abstract type constructor in Essence,

and horizontal rules which are representation independent.

The rules of Conjure are expected to be free of infinite loops; however, this condition is

not checked by Conjure. Provided with a collection of rules which go into an infinite loop

for certain inputs, Conjure will go into an infinite loop of rule applications and will never

halt. The rules do not need to be confluent. Indeed, different rule application orders are

explored by Conjure to produce different outputs models.

In this thesis, the correctness of the provided rules is not formally proven. In order to

provide such a proof, firstly each individual rule has to be proven correct. Secondly, the

complete collection of rules has to be proven correct by considering the interaction between

different variable representations and expression refinement rules. The implementation

of Conjure together with the rules presented in this chapter are tested thoroughly for

correctness.

For testing Conjure, a collection of 1200 problem specifications written in Essence is

used. More than half of these specifications are written to test different parts of Conjure

and its rule base during the implementation of Conjure and during the addition of new

71



6. The Rules of Conjure

variable representations. Essence problem specifications for all problems in the online

Essence Specification Catalog1 are also used for testing. Most of the problems in the Essence

Catalog are taken from CSPLib2 which is a frequently used library of test problems for CP.

Each problem specification is run through Conjure to generate all attainable models

using the collection of rules presented in this chapter. For each problem specification, a

collection of parameter files are used to instantiate each generated model, and then the

problem instance is solved using SavileRow and Minion as presented in Section 4.1. Each

solution is then validated using Conjure.

Conjure takes the original input problem specification, the input parameter and the

generated solution for its solution validation. For validation, Conjure instantiates the

given statements using the values present in the input parameter and instantiates the find

statements using the values present in the solution file. At this point, the built-in Essence

evaluator in Conjure is able to reduce the input problem specification down to an atomic

boolean value: false or true. A false value indicates an invalid solution and a true value

indicates a valid solution.

This approach has a good power-to-weight ratio for testing the correctness of a system

as complex as Conjure. All the moving parts of the system are tested since we start from

as high level as Essence problem specifications and data presented using Essence data

structures, go all the way down to a concrete solver and translate the solutions back up to

the same abstraction level we started from.

The rest of this chapter presents the representation selection rules and vertical rules for

each representation and for each abstract type constructor in Essence; and horizontal rules

which are representation independent.

Sets are explained first in Section 6.1. Each set representation is listed as a subsection,

starting with the representation selection rule, followed by the vertical rules required for

that representation. After all the representations are listed, some horizontal rules used for

1http://www.cs.york.ac.uk/aig/constraints/AutoModel/Essence/specs120
2http://www.csplib.org
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1 ; Set~Occurrence
2 ; matrix indexed by [ &tau ] of bool
3 where &tau hasType ‘ in t ‘
4

5 ∗∗∗ s e t of &tau
6

7 ∗∗∗ s e t ( s i z e &size_ , . . ) of &tau
8 ; (sum i : &tau . t o I n t ( re fn [ i ] ) ) = &size_
9

10 ∗∗∗ s e t ( minSize &minSize_) of &tau
11 ; (sum i : &tau . t o I n t ( re fn [ i ] ) ) >= &minSize_
12

13 ∗∗∗ s e t ( maxSize &maxSize_) of &tau
14 ; (sum i : &tau . t o I n t ( re fn [ i ] ) ) <= &maxSize_
15

16 ∗∗∗ s e t ( minSize &minSize_ , maxSize &maxSize_) of &tau
17 ; (sum i : &tau . t o I n t ( re fn [ i ] ) ) >= &minSize_
18 /\ (sum i : &tau . t o I n t ( re fn [ i ] ) ) <= &maxSize_

Figure 6.1: Occurrence representation for set domains.

the representation are also given before finishing the section. The same is done for multi-sets

in Section 6.2, for functions in Section 6.3, for relations in Section 6.4, and for partitions in

Section 6.5. Section 6.6 gives a listing of some of the most important horizontal rules in

Conjure to provide the reader with a general understanding of the mechanism.

6.1 Rules for set domains

6.1.1 Occurrence representation

Occurrence representation for sets works on sets of integers. It uses a matrix of booleans

indexed by the possible elements of the set. Membership is denoted by a true assignment to

the corresponding position in the matrix. i’th position of the matrix is true iff i is a member

of the set, and false if it is not. Set cardinality is not stored separately as it can easily be

calculated using a sum over all the booleans. One advantage of the occurrence representation

is its uniform applicability to integer sets independent of the size attributes of a set. It can
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be applied to both those sets with a known cardinality and those with a variable cardinality.

Figure 6.1 gives the rule used by Conjure to implement representation selection for the

Occurrence representation. The first line gives a name to the representation. The second line

gives the output domain: when applied, this rule always generates a domain of the form

matrix indexed by [&tau] of bool. In this domain, &tau is a meta-variable and its value

is not known yet. Line 3 is a condition: this rule is only applicable if &tau has an integer

type. After this preamble 5 cases are listed. Each case has a domain pattern and optionally

structural constraints.

The first case contains a set domain without any size attributes. In such a case no

structural constraints can be posted: any assignment to the matrix domain gives a valid

assignment to the set domain. The second case contains a set domain with a size attribute.

The pattern also contains a ‘..’ next to the size attribute, this syntax indicates that the

pattern should ignore other attributes of this domain if there are any. The ‘..’ syntax

can be used in this case because once a size attribute is given, other attributes of a set

domain are irrelevant. The third and forth cases contain set domains with a minSize and

maxSize attribute respectively. They post appropriate structural constraints to constrain

the cardinality of the set. The fifth and the final case contains a set domain with both the

minSize and the maxSize attributes. In this case, a conjunction of two constraints are posted

to constrain the cardinality of the set from both ends.

6.1.1.1 Vertical rules

The rule given in Figure 6.2 is used when refining a quantified expression over set decision

variables or parameters that are represented using the Occurrence representation. It matches

all three kinds of quantified expressions in Essence: forAll, exists and sum. The quantifier

keyword is bound to the meta variable &quan. It replaces a quantified expression over a

set decision variable into a simple quantified expression, one quantifying over an integer

domain. The quantified variable &i represents elements in the set in the original expression,

and it represents indices of the matrix in the output expression. Indices of a set with the
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1 [ 1 0 0 0 ]
2

3 &quan &i in &s , &g . &k
4 ;

5 &quan &i : &tau , &g /\ &m[ &i ]
6 . &k
7

8 where &s hasDomain ‘ s e t ( . . ) of &tau ‘
9 where &s hasRepr Set~Occurrence

10

11 l e t t i n g &m be re fn ( &s )

Figure 6.2: Vertical rule for Quantified expressions and Occurrence representation of sets

1 [ 9 0 0 ]
2

3 &x in &s ; re fn ( &s ) [ &x] = true
4

5 where &s hasRepr Set~Occurrence

Figure 6.3: Vertical rule for membership operator and Occurrence representation of sets

occurrence representation correspond to elements of the set if the matrix contains a true

value in the corresponding position. A new guard is added to the output expression so the

body of the quantified expression is only active for those values that are in the set.

This vertical rule is the only rule required for representations of set domains. All other

set operators can be refined using horizontal rules. These horizontal rules are given in

Section 6.6.1.

For example the expression « forAll i in a , i > 3 . i in b » will be refined to

« forAll i : int(..) , i > 3 /\ a’[i] . i in b » using this rule, where a’ is the

refinement of a.

Figure 6.3 defines a vertical rule which is not necessary for completeness. If this rule

was left out, Conjure would use a horizontal rule (Figure 6.37) to rewrite expressions using

the in operator into expressions using an exists quantified expression to be further refined

using the existing vertical rule for quantified expressions: Figure 6.2.

75



6. The Rules of Conjure

1 ; Set~ E x p l i c i t
2 ; matrix indexed by [ i n t ( 1 . . &size_ ) ] of &tau
3 ; a l l D i f f ( re fn )
4

5 ∗∗∗ s e t ( s i z e &size_ , . . ) of &tau

Figure 6.4: Explicit representation for set domains with fixed cardinality.

For example the expression « 3 in s » will be refined to « s’[3] » using this rule, where

s’ is the refinement of s.

6.1.2 Explicit representation with a fixed cardinality

The simple version of the Explicit representation for sets works on sets with fixed cardinality.

Its implementation is very simple, yet it is very widely applicable since the rule does not

place a condition on the type of &tau, the inner type of the set domain.

Figure 6.4 gives the rule used by Conjure to implement representation selection for

this representation. The rule contains only one case: a set domain with a fixed size. Its

output domain is a matrix with as many elements as the set requires. The most important

component of this rule is the structural constraint.

A set has the implicit condition that each element contained in the set needs to be

distinct. Using a matrix of elements to represent a set requires the addition of an explicit

condition, in the form of a structural constraint, to maintain this requirement of the original

domain. For this purpose, an allDiff constraint is posted on the matrix. This constraint

will need to be decomposed into a clique of inequality constraints if &tau is not a compatible

type with the allDiff constraint supported by Essence
′. The decomposition of allDiff is

implemented using the horizontal rule shown in Figure 6.55.

6.1.2.1 Symmetry

This representation introduces modelling symmetry: items in the set can be ordered. It is not

easy to write this ordering constraint instead of the allDiff here because &tau can be any
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1 [ 1 0 0 0 ]
2

3 &quan &i in &s , &g . &k
4 ;

5 &quan j : &r , &g { &i −−> &m[ j ] }
6 . &k { &i −−> &m[ j ] }
7 where &s hasRepr Set~ E x p l i c i t
8 l e t t i n g &m be re fn ( &s )
9 l e t t i n g &r be i n d i c e s (&m, 0 )

Figure 6.5: Vertical rule for Quantified expressions and Explicit representation of sets

type and Essence does not contain a generic operator to order values of arbitrary types.

However, Conjure can automatically break this kind of symmetry. The mechanism will be

described in Chapter 8.

6.1.2.2 Vertical rules

The rule given in Figure 6.5 is used when refining quantified expressions over set decision

variables which are represented using the Explicit representation. In this rule, the quantified

variable &i in the input expression takes values from the elements of the set. However, j in

the output quantified expression takes values from the indices of the matrix. The guard &g

and the body &b of the quantified expression are written in terns of the elements of the set,

and the elements of the set are represented using items in the Explicit matrix. For this reason

the deep-replace construct is used to replace all references to &i with the corresponding

expression &m[j].

For example the expression « forAll i in a , i > 3 . i in b » will be refined to

« forAll j : int(..) , a’[j] > 3 . a’[j] in b » using this rule, where a’ is the

refinement of a.

6.1.3 Explicit representation with variable cardinality and Boolean markers

The simple Explicit representation only works for sets with known cardinality. This is a

huge limitation in practice, because the cardinality is also a decision rather than a parameter
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1 ; Set~ E x p l i c i t V a r S i z e ~BoolMarker
2 ; matrix indexed by [ i n t ( 1 . . &maxSize_) ] of ( bool , &tau )
3 ; f o r A l l i , j : i n t ( 1 . . &maxSize_)
4 , i < j /\ re fn [ i ] [ 1 ] /\ j <= re fn [ j ] [ 1 ]
5 . r e fn [ i ] [ 2 ] != re fn [ j ] [ 2 ]
6

7 ∗∗∗ s e t of &tau
8 l e t t i n g &maxSize_ be domSize ( &tau )
9

10 ∗∗∗ s e t ( minSize &minSize_) of &tau
11 ; (sum i : i n t ( 1 . . &maxSize_) . t o I n t ( re fn [ i ] [ 1 ] ) ) >= &minSize_
12 l e t t i n g &maxSize_ be domSize ( &tau )
13

14 ∗∗∗ s e t ( maxSize &maxSize_) of &tau
15

16 ∗∗∗ s e t ( minSize &minSize_ , maxSize &maxSize_) of &tau
17 ; (sum i : i n t ( 1 . . &maxSize_) . t o I n t ( re fn [ i ] [ 1 ] ) ) >= &minSize_

Figure 6.6: Explicit representation with variable cardinality and Boolean markers

in many interesting problems which use a decision variable with a set domain. This

representation works for sets of all types and does not require a fixed cardinality.

There are four cases in the representation selection rule given in Figure 6.6. The first two

cases do not have a maxSize attribute, and hence the maximum number of elements that

the set domain can have needs to be calculated. This calculation is done using the domSize

operator. The value is bound to a local meta variable &maxSize_ to be used in the preamble.

The last two cases do not need to use the domSize operator as they already have access to

the attribute value provided in the domain.

The domain generated by this representation uses a matrix which has enough slots for

the maximum number of elements that can be in the set domain. Each item in the matrix is a

2-tuple; the first component is a boolean marker indicating whether the value of the second

component should be treated as a member of the set. The structural constraint posted by

this representation is similar to a decomposition of a conditional allDiff constraint.

In addition to the structural constraint posted in the preamble of the rule, cases 2 and 4

which have access to a &minSize_ attribute post an additional structural constraint

78



6.1. Rules for set domains

1 [ 1 0 0 0 ]
2

3 &quan &i in &s , &g . &k
4 ;

5 &quan j : &r , &g { &i −−> &m[ j ] [ 2 ] } /\ &m[ j ] [ 1 ]
6 . &k { &i −−> &m[ j ] [ 2 ] }
7

8 where &s hasRepr Set~ E x p l i c i t V a r S i z e ~BoolMarker
9 l e t t i n g &m be re fn ( &s )

10 l e t t i n g &r be i n d i c e s (&m, 0 )

Figure 6.7: Vertical rule for Quantified expressions and Explicit-BoolMarker representation
of sets

6.1.3.1 Symmetry

This representation introduces modelling symmetry in two places. First, the boolean

markers can be ordered so that the true ones are at the beginning (or at the end) of the

matrix. Second, the second components of each matrix element can be ordered provided

the corresponding boolean marker is true.

6.1.3.2 Vertical rules

Figure 6.7 gives the rule for refining quantified expressions over sets with this representation.

It works similarly to other vertical rules, the input expression is quantified over the set

variable but the output expression is quantified over the indices of the matrix represent-

ation. Since the membership condition is captured using the boolean component in this

representation, that component is used as a guard in the output quantified expression.

For example the expression « forAll i in a , i > 3 . i in b » will be refined to

« forAll j : int(..) , a’[j,2] > 3 /\ a’[j,1] . a’[j,2] in b » using this rule,

where a’ is the refinement of a.
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1 ; Set~ E x p l i c i t V a r S i z e ~IntMarker
2 ; ( i n t ( 0 . . &maxSize_)
3 , matrix indexed by [ i n t ( 1 . . &maxSize_) ] of &tau
4 )
5 ; f o r A l l i , j : i n t ( 1 . . &maxSize_)
6 , i < j /\ i <= re fn [ 1 ] /\ j <= re fn [ 1 ]
7 . r e fn [ 2 ] [ i ] != re fn [ 2 ] [ j ]
8

9 ∗∗∗ s e t of &tau
10 l e t t i n g &maxSize_ be domSize ( &tau )
11

12 ∗∗∗ s e t ( minSize &minSize_) of &tau
13 ; re fn [ 1 ] >= &minSize_
14 l e t t i n g &maxSize_ be domSize ( &tau )
15

16 ∗∗∗ s e t ( maxSize &maxSize_) of &tau
17

18 ∗∗∗ s e t ( minSize &minSize_ , maxSize &maxSize_) of &tau
19 ; re fn [ 1 ] >= &minSize_

Figure 6.8: Explicit representation with variable cardinality and an integer marker

6.1.4 Explicit representation with variable cardinality and an integer marker

This representation is very similar to Figure 6.6. Instead of using a boolean for each candidate

member of the set, it uses a single integer decision variable. This integer represents the

cardinality of the set and indices less than or equal to the value of it are considered to

be members of the set. The output domain and the structural constraints are modified

accordingly.

6.1.4.1 Symmetry

This representation avoids introducing one of the two modelling symmetries introduced

when boolean markers are used. We no longer need to order boolean markers. However the

second kind of symmetry is still introduced: values in the matrix up to the index marked by

the integer can be ordered.
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6.1. Rules for set domains

1 [ 1 0 0 0 ]
2

3 &quan &i in &s , &g . &k
4 ;

5 &quan j : &r , &g { &i −−> &m[ 2 ] [ j ] } /\ j <= &m[ 1 ]
6 . &k { &i −−> &m[ 2 ] [ j ] }
7 where &s hasRepr Set~ E x p l i c i t V a r S i z e ~IntMarker
8 l e t t i n g &m be re fn ( &s )
9 l e t t i n g &r be i n d i c e s (&m[ 2 ] , 0 )

Figure 6.9: Vertical rule for Quantified expressions and Explicit-IntMarker representation of
sets

1 [ 6 0 0 ]
2

3 |&s| ; &m[ 1 ]
4 where &s hasRepr Set~ E x p l i c i t V a r S i z e ~IntMarker
5 l e t t i n g &m be re fn ( &s )

Figure 6.10: Vertical rule for cardinality and Explicit-IntMarker representation of sets

6.1.4.2 Vertical rules

Figure 6.9 gives the rule for refining quantified expressions over sets with this representation.

The rule is very similar to Figure 6.7, the biggest difference is in the guarding mechanism.

This rule uses the integer marker rather than the boolean marker, since the membership

condition is captured using the integer component.

For example the expression « forAll i in a , i > 3 . i in b » will be refined to

« forAll j : int(..) , a’[2,j] > 3 /\ j <= a’[1] . a’[2,j] in b » using this

rule, where a’ is the refinement of a.

Figure 6.10 gives another vertical rule for this representation. Since this representation

represents the cardinality of the set in a decision variable already, the cardinality operator

can be implemented in terms of that decision variable. This rule overrides Figure 6.33 and

Figure 6.34 because it is defined at a lower level (600).
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1 ; Set~ E x p l i c i t V a r S i z e ~Dummy
2 ; matrix indexed by [ i n t ( 1 . . &maxSize_) ] of i n t ( &lb . . &dummy)
3 ; f o r A l l i , j : i n t ( 1 . . &maxSize_)
4 , i < j /\ re fn [ i ] != &dummy /\ refn [ j ] != &dummy
5 . r e fn [ i ] != re fn [ j ]
6

7 where &tau hasType ‘ in t ‘
8 where &tau hasDomain ‘ i n t ( &lb . . &ub) ‘
9 l e t t i n g &dummy be &ub + 1

10

11 ∗∗∗ s e t of &tau
12 l e t t i n g &maxSize_ be domSize ( &tau )
13

14 ∗∗∗ s e t ( minSize &minSize_) of &tau
15 ; (sum i : i n t ( 1 . . &maxSize_) . t o I n t ( re fn [ i ] != &dummy) )
16 >= &minSize_
17 l e t t i n g &maxSize_ be domSize ( &tau )
18

19 ∗∗∗ s e t ( maxSize &maxSize_) of &tau
20

21 ∗∗∗ s e t ( minSize &minSize_ , maxSize &maxSize_) of &tau
22 ; (sum i : i n t ( 1 . . &maxSize_) . t o I n t ( re fn [ i ] != &dummy) )
23 >= &minSize_

Figure 6.11: Explicit representation with variable cardinality and a dummy value

6.1.5 Explicit representation with variable cardinality and a dummy value

This representation is specialised to domains of type set of int. It works by introducing a

dummy value to the domain and only considering values as a member of the set when their

value is different from the dummy value. The dummy value is chosen by incrementing the

largest integer in the original integer domain.

This rule is applicable for a smaller number of domains than those listed in the previous

sections; however, it is likely to produce better models when it is applicable.

6.1.5.1 Symmetry

This representation introduces modelling symmetry. Values of the matrix that are different

from the dummy value can be ordered. Moreover, those cells which hold the dummy value
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6.2. Rules for multi-set domains

1 [ 1 0 0 0 ]
2

3 &quan &i in &s , &g . &k
4 ;

5 &quan j : &r , &g { &i −−> &m[ j ] } /\ &m[ j ] != &dummy
6 . &k { &i −−> &m[ j ] }
7 where &s hasDomain ‘ s e t ( . . ) of i n t ( &lb . . &ub) ‘
8 where &s hasRepr Set~ExplicitVarSizeWithdummyault
9 l e t t i n g &m be re fn ( &s )

10 l e t t i n g &r be i n d i c e s (&m, 0 )
11 l e t t i n g &dummy be &ub + 1

Figure 6.12: Vertical rule for Quantified expressions and Explicit-Dummy representation of
sets

can also be shifted to either the beginning or the end of the matrix.

6.1.5.2 Vertical rules

Figure 6.12 gives the rule for refining quantified expressions over sets with this repres-

entation. In the input expression of this rule &i represents an element of the set, in the

output expression j represents an index in the representation matrix. For this reason the

deep-replace construct is used to replace all references to &i with &m[j] in the guard and the

body components of the quantified expression. Moreover, a new guard is added to post the

condition of membership in the set: m[j] != &dummy.

For example the expression « forAll i in a , i > 3 . i in b » will be refined

to « forAll j : int(..) , a’[j] >3 /\ a’[j] != d . a’[j] in b » using this rule,

where a’ is the refinement of a and d is the dummy value for a’s domain.

6.2 Rules for multi-set domains

6.2.1 Occurrence representation for Multi-Sets

The Occurrence representation for multi-sets can be used for domains with type mset of

int. This representation is similar to the Occurrence representation for sets; however, it
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6. The Rules of Conjure

1 ; MSet~Occurrence
2 ; matrix indexed by [ &tau ] of i n t ( 0 . . &maxOccur_ )
3 where &tau hasType ‘ in t ‘
4

5 ∗∗∗ mset ( s i z e &size_ , maxOccur &maxOccur_ ) of &tau
6 ; ( ( sum i : &tau . re fn [ i ] ) = &size_ )
7

8 ∗∗∗ mset ( minSize &minSize_ , maxSize &maxSize_ ,
9 minOccur &minOccur_ , maxOccur &maxOccur_ ) of &tau

10 ; ( ( sum i : &tau . re fn [ i ] ) >= &minSize_) /\
11 ( ( sum i : &tau . re fn [ i ] ) <= &maxSize_) /\
12 ( f o r A l l i : &tau , re fn [ i ] > 0 . re fn [ i ] >= &minOccur_ )
13

14 ∗∗∗ mset ( maxSize &maxSize_ , minOccur &minOccur_ ) of &tau
15 ; ( ( sum i : &tau . re fn [ i ] ) <= &maxSize_) /\
16 ( f o r A l l i : &tau , re fn [ i ] > 0 . re fn [ i ] >= &minOccur_ )
17 l e t t i n g &maxOccur_ be &maxSize_
18

19 . . .

Figure 6.13: Occurrence representation for Multi-Sets

uses integers instead of booleans in a matrix domain. The integer at each slot of the matrix

indicates the number of occurrences of the index value in the multi-set.

In Essence, multi-sets have 5 attributes: size, minSize, maxSize, minOccur, maxOccur.

The first three of these attributes control how many elements will be in a multi-set, and the

last two control how many times each value can occur in a multi-set.

The representation rule given in Figure 6.13 is partial. The actual rule contains more

cases to cover other combination of attributes. The three cases are chosen to exemplify the

operation of the rule in combination with the preamble of the rule, which is listed in full.

In the first case, size and maxOccur attributes are given. The value of &maxOccur_ is

used in the output domain, and the value of &size_ is used to post a structural constraint. In

the second case, size is not given, however minSize and maxSize are given. The structural

constraint changes to make sure the number of elements in the multi-set are between the

given range. In addition, a minOccur attribute is also given. This means if a value is in the

multi-set, it needs to be there are least &minOccur_ times. A structural constraint to ensure
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6.2. Rules for multi-set domains

1 [ 1 0 0 0 ]
2

3 f o r A l l &i in &s , &g . &k
4 ;

5 f o r A l l j : &t , &g { &i −−> j } /\ (&m[ j ] > 0)
6 . &k { &i −−> j }
7 where &s hasRepr MSet~Occurrence
8 where &s hasDomain ‘ mset ( . . ) of &t ‘
9 l e t t i n g &m be re fn ( &s )

Figure 6.14: Vertical rule for forAll Quantified expressions and Occurrence representation
of multi-sets

1 [ 1 0 0 0 ]
2

3 sum &i in &s , &g . &k
4 ;

5 sum j : &t , &g { &i −−> j }
6 . &k { &i −−> j } ∗ &m[ j ]
7 where &s hasRepr MSet~Occurrence
8 where &s hasDomain ‘ mset ( . . ) of &t ‘
9 l e t t i n g &m be re fn ( &s )

Figure 6.15: Vertical rule for sum Quantified expressions and Occurrence representation of
multi-sets

this condition is posted. The third case is interesting because it does not contain a value for

&maxOccur_, even though it is needed for the output domain. The rule assigns the value

of &maxSize_ to &maxOccur_, because the multi-set cannot contain any element more times

than its total size. This might be a lose bound on the number of occurrences, but it is the

best that can be done with the provided set of attributes.

6.2.1.1 Vertical rules

Quantified expressions over multi-set decision variables using the Occurrence representation

need to be written separately for each quantifier: forAll, exists, and sum. This is because

the elements of the representation matrix are the number of occurrences of the index value

in the multi-set. For forAll and exists, the number of occurrences of a value does not
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6. The Rules of Conjure

make a difference, we only need to know whether the value is present in the multi-set or not.

But for sum, the number of occurrences of a value does matter, if a value occurs multiple

times that value needs to be used multiple times in the generated quantified expression.

The rule given in Figure 6.14 is used when refining a forAll quantified expression over

multi-sets that are represented using the Occurrence representation. The exists quantifier

is also handled in a similar way but not presented here. It replaces a quantified expression

over a multi-set decision variable into a simple quantified expression, one quantifying over

an integer domain. The quantified variable &i represents elements in the set in the original

expression, and it represents indices of the matrix in the output expression. Indices of

a set with the occurrence representation correspond to elements of the set if the matrix

contains a positive value in the corresponding position. A new guard is added to the output

expression so the body of the quantified expression is only active for those values that are in

the multi-set at least once.

The rule given in Figure 6.15 is for handling the sum case. The main difference in this

rule is the guard and body of the generated quantified expression. This rule does not add

a new guard, instead it uses the number of occurrences of the value as a multiplier to the

body.

These vertical rules are the only rules required for representations of multi-set domains.

All other multi-set operators can be refined using horizontal rules. These horizontal rules

are given in Section 6.6.2.

6.2.2 Explicit representation for Multi-Sets

The Explicit representation for multi-sets uses a matrix which holds members of the multi-

set. If a member occurs multiple times in the multi-set, it can be present in the matrix

multiple times in different positions.

The rule given in Figure 6.16 is partial, for similar reasons to Figure 6.13. The two cases

listed here are chosen to exemplify the operation of the rule.

In the first case, size and maxOccur attributes are given. The values of &size_ is used
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6.2. Rules for multi-set domains

1 ; MSet~ E x p l i c i t
2 ; matrix indexed by [ i n t ( 1 . . &size_ ) ] of &tau
3

4 ∗∗∗ mset ( s i z e &size_ , maxOccur &maxOccur_ ) of &tau
5 ; f o r A l l i : &tau .
6 (sum j : i n t ( 1 . . &size_ ) , re fn [ j ] = i . 1 ) <= &maxOccur_
7

8 ∗∗∗ mset ( s i z e &size_ , minOccur &minOccur_ ) of &tau
9 ; f o r A l l i : &tau .

10 ( ( sum j : i n t ( 1 . . &size_ ) , re fn [ j ] = i . 1 ) = 0) \/
11 ( ( sum j : i n t ( 1 . . &size_ ) , re fn [ j ] = i . 1 ) >= &minOccur_ )
12

13 . . .

Figure 6.16: Explicit representation for Multi-Sets

1 [ 1 0 0 0 ]
2

3 &quan &i in &s , &g . &k
4 ;

5 &quan j : &r , &g { &i −−> &m[ j ] }
6 . &k { &i −−> &m[ j ] }
7 where &s hasType ‘ mset of _ ‘
8 where &s hasRepr MSet~ E x p l i c i t
9 l e t t i n g &m be re fn ( &s )

10 l e t t i n g &r be i n d i c e s (&m, 0 )

Figure 6.17: Vertical rule for Quantified expressions and Explicit representation of multi-sets

in the output domain, and the values of &maxOccur_ is used to post a structural constraint.

The structural constraint ensures each value is only used as many as &maxOccur_ in the

matrix. In the second case, maxOccur is not given but minOccur is given. A similar structural

constraint is posted, but this time the constraint is a disjunction of two conditions. A value is

either not present in the multi-set at all, or if it is present it has to occur at least &minOccur_

times.
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6.2.2.1 Vertical rules

The rule given in Figure 6.17 is used when refining a quantified expression over a multi-set

decision variables or parameters that are represented using the Explicit representation. In

this rule, the quantified variable &i in the input expression takes values from the elements of

the multi-set. However, j in the output quantified expression takes values from the indices

of the matrix. The guard &g and the body &b of the quantified expression are written in

terns of the elements of the multi-set, and the elements of the multi-set are represented

using items in the Explicit matrix. For this reason the deep-replace construct is used to replace

all references to &i with the corresponding expression &m[j].

This vertical rule is the only rule required for representations of multi-set domains. All

other multi-set operators can be refined using horizontal rules. These horizontal rules are

given in Section 6.6.2.

For example the expression « forAll i in a , i > 3 . i in b » will be refined to

« forAll j : int(..) , a’[j] > 3 . a’[j] in b » using this rule, where a’ is the

refinement of a.

6.3 Rules for function domains

6.3.1 One dimensional matrix representation

Function domains represent a mapping between values of one domain to another. The first

component of a function domain is its defined set, and the second component is its range set.

This representation can be used to model function domains which are total and have an

integer domain for the defined set. It uses a simple one dimensional matrix indexed by the

defined set. Each item in the matrix represent a mapping in the function domain. Namely, i

is mapped to the value at index i in the matrix.

Three cases of this representation selection rule are given in Figure 6.18. The first case

works for a total function and does not post any structural constraints. The second case is
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6.3. Rules for function domains

1 ; Function ~1D
2 ; matrix indexed by [ &fr ] of &to
3 where &fr hasType ‘ in t ‘
4

5 ∗∗∗ func t ion ( t o t a l ) &fr −−> &to
6

7 ∗∗∗ func t ion ( t o t a l , i n j e c t i v e ) &fr −−> &to
8 ; a l l D i f f ( re fn )
9

10 ∗∗∗ func t ion ( t o t a l , s u r j e c t i v e ) &fr −−> &to
11 ; f o r A l l i : &to . e x i s t s j : &fr . re fn [ j ] = i
12

13 . . .

Figure 6.18: One dimensional matrix representation

1 [ 1 0 0 0 ]
2

3 &f (&x) ; re fn ( &f ) [ &x]
4 where &f hasType ‘ funct ion i n t −−> _ ‘
5 where &f hasRepr Function ~1D

Figure 6.19: Vertical rule for one dimensional matrix representation and the function
application operator

for function domains which are total and injective. Injectivity implies distinctness, and

it can be achieved by posting an allDiff constraint on the generated matrix. The third case

is for function domains which are total and surjective. Surjectivity implies coverage of

the range set, and it can be achieved by using a universal quantification over the values of

the range set. The structural constraint ensures that there is a mapping for every value in

the range set.

6.3.1.1 Vertical rules

The rule given in Figure 6.19 s the vertical rule for what is probably the most important

operator defined for function domains: function application. Thanks to the underlying

representation being a one-dimensional matrix, function application is simply translated

into a matrix dereference.
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1 [ 1 0 0 0 ]
2

3 &quan &i in t o S e t ( &f ) , &g . &b
4 ;

5 &quan k : &domFrom , &g { &i [ 1 ] −−> k , &i [ 2 ] −−> &m[ k ] }
6 . &b { &i [ 1 ] −−> k , &i [ 2 ] −−> &m[ k ] }
7 where &f hasType ‘ funct ion i n t −−> _ ‘
8 where &f hasDomain ‘ funct ion ( . . ) &domFrom −−> _ ‘
9 where &f hasRepr Function ~1D

10 l e t t i n g &m be re fn ( &f )

Figure 6.20: Vertical rule for one dimensional matrix representation and the function toSet
operator

The rule given in Figure 6.20 s the vertical rule for quantification over the set representa-

tion of a function.

For example the expression « forAll i in toSet(a) , i[1] > 3 . i[2] in b » will

be refined to « forAll j : int(..) , j > 3 . a’[j] in b » using this rule, where a’

is the refinement of a.

These two vertical rules and a variation of the toSet rule for the toMSet operator are all

the vertical rules needed for function domains. All other function operators can be refined

using horizontal rules. These horizontal rules are given in Section 6.6.4.

6.3.2 Representing functions using relations

The representation option given in Figure 6.18 can be very efficient for some function

domains. But it does not work for all function domains. This representation, given in

Figure 6.21 works for all function domains by representing a function domain using a

relation domain. The generated relation domain will be further refined using representation

options.

Four cases of this representation selection rule are given in Figure 6.21. The first case

works for function domains without any attribute. If no attribute is given for a function

domain, we do not need to post many structural constraints, however by using a relation
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6.3. Rules for function domains

1 ; Function~AsReln
2 ; r e l a t i o n of ( &fr ∗ &to )
3

4 ∗∗∗ func t ion &fr −−> &to
5 ; ( f o r A l l i : &fr . (sum j in t o S e t ( re fn ) . t o I n t ( i = j [ 1 ] ) ) <= 1)
6

7 ∗∗∗ func t ion ( t o t a l ) &fr −−> &to
8 ; ( f o r A l l i : &fr . (sum j in t o S e t ( re fn ) . t o I n t ( i = j [ 1 ] ) ) = 1)
9

10 ∗∗∗ func t ion ( t o t a l , i n j e c t i v e ) &fr −−> &to
11 ; ( f o r A l l i : &fr . (sum j in t o S e t ( re fn ) . t o I n t ( i = j [ 1 ] ) ) = 1)
12 /\ ( f o r A l l i , j in t o S e t ( re fn ) , i [ 1 ] != j [ 1 ] . i [ 2 ] != j [ 2 ] )
13

14 ∗∗∗ func t ion ( t o t a l , s u r j e c t i v e ) &fr −−> &to
15 ; ( f o r A l l i : &fr . (sum j in t o S e t ( re fn ) . t o I n t ( i = j [ 1 ] ) ) = 1)
16 /\ ( f o r A l l i : &to . e x i s t s j in t o S e t ( re fn ) . i = j [ 2 ] )
17

18 . . .

Figure 6.21: Representing functions using relations

to model a function we still need to post a structural constraint to ensure there is at most

one mapping for each value in the defined set. The second case works for total function

domains. The structural constraint is very similar to that of the first case, instead of having

at most one mapping for each value this time we can have exactly one mapping for each

value. The third case works for total and injective function domains. In addition to the

totality constraint, another structural constraint is posted to ensure injectivity. The fourth

case is for total and surjective function domains. It posts an additional constraint saying

there needs to be a mapping for each value in the range set.

6.3.2.1 Vertical rules

Refinement of function application was very straightforward for the one-dimensional matrix

representation. However, when representing functions as relations it is more involved. The

rule needs to be separated into pieces depending on the range type of the function. i.e.

those function applications which produce a boolean expression are handled differently
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1 [ 1 0 0 0 ]
2

3 &f (&x) ; f o r A l l i in t o S e t ( re fn ( &f ) ) , i [ 1 ] = &x . i [ 2 ]
4 where &f hasType ‘ funct ion _ −−> bool ‘
5 where &f hasRepr Function~AsReln

Figure 6.22: Vertical rule for one dimensional matrix representation and the function
application operator: bool

1 [ 1 0 0 0 ]
2

3 &f (&x) ; sum i in t o S e t ( re fn ( &f ) ) , i [ 1 ] = &x . i [ 2 ]
4 where &f hasType ‘ funct ion _ −−> int ‘
5 where &f hasRepr Function~AsReln

Figure 6.23: Vertical rule for one dimensional matrix representation and the function
application operator: int

1 [ 1 0 0 0 ]
2

3 &quan &i in &f (&x) , &guard . &body
4 ;

5 &quan j in t o S e t ( re fn ( &f ) ) , &x = j [ 1 ] .
6 &quan k in j [ 2 ] , &guard { &i −−> k }
7 . &body { &i −−> k }
8 where &f hasType ‘ funct ion _ −−> s e t of _ ‘
9 where &f hasRepr Function~AsReln

Figure 6.24: Vertical rule for one dimensional matrix representation and the function
application operator: set

then those which produce a set expression.

Three examples of this kind of rule is given in Figure 6.22, Figure 6.23, and Figure 6.24.

The main difference between handling booleans and integers is the quantifier being used:

forAll and sum respectively.

The rule given in Figure 6.24 is only written for when the function application is in a

quantified position. Thanks to horizontal rules of set domains, set expressions can always

be converted to this form.
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1 ; Rela t ion~IntMatr ix2
2 ; matrix indexed by [&a , &b] of bool
3 where &a hasType ‘ in t ‘
4 where &b hasType ‘ in t ‘
5

6 ∗∗∗ r e l a t i o n of (&a ∗ &b)
7

8 ∗∗∗ r e l a t i o n ( minSize &minSize_ , maxSize &maxSize_) of (&a ∗ &b)
9 ; (&minSize_ <= sum i : &a . sum j : &b . t o I n t ( re fn [ i , j ] ) )

10 /\ (&maxSize_ >= sum i : &a . sum j : &b . t o I n t ( re fn [ i , j ] ) )
11

12 ∗∗∗ r e l a t i o n ( s i z e &size_ ) of (&a ∗ &b)
13 ; &size_ = sum i : &a . sum j : &b . t o I n t ( re fn [ i , j ] )
14

15 . . .

Figure 6.25: Two dimensional matrix representation

6.4 Rules for relation domains

6.4.1 Two dimensional matrix representation

This representation works by converting a relation between two integer domains to a two

dimensional matrix of boolean variables. It only works for relations of fixed arity and more

importantly on integer domains, but it is likely to be a very good representation for many

models.

Three cases of this representation selection rule are given in Figure 6.25. In the first

case, the relation domain does not contain any attributes. This case does not require any

structural constraints, any assignment to the matrix domain is a valid assignment to the

original relation domain. In the second case, minSize and maxSize attributes are given. A

conjunction of two cardinality constraints is posted to ensure this condition. The third case

is similar, a size attribute is given and the appropriate structural constraint is posted.
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1 [ 1 0 0 0 ]
2

3 &r ( &i , &j ) ; &refnr [ &i , &j ]
4 where &r hasRepr R e l a t i o n I n t M a t r i x 2
5 where &r ( &i , &j ) hasType ‘ bool ‘
6 l e t t i n g &refnr be re fn ( &r )

Figure 6.26: Vertical rule for two dimensional matrix representation and the relation mem-
bership check operator

1 [ 1 0 0 0 ]
2

3 &quan &i in t o S e t ( &rel ) , &guard . &body
4 ;

5 &quan j 1 : &index1 .
6 &quan j 2 : &index2
7 , &guard { &i −−> ( j1 , j 2 ) } /\ &refnrel [ j1 , j 2 ]
8 . &body { &i −−> ( j1 , j 2 ) }
9

10 where &rel hasRepr R e l a t i o n I n t M a t r i x 2
11 l e t t i n g &refnrel be re fn ( &rel )
12 l e t t i n g &index1 be i n d i c e s ( &refnrel , 0 )
13 l e t t i n g &index2 be i n d i c e s ( &refnrel , 1 )

Figure 6.27: Vertical rule for two dimensional matrix representation and the relation toSet
operator

6.4.1.1 Vertical rules

The rule given in Figure 6.26 is used for the membership check operator of relation domains.

The input pattern is an expression which checks whether the tuple (&i,&j) are in the relation.

The output expression is a tow-dimensional matrix dereference, using the underlying matrix

which represents the relation.

The rule given in Figure 6.27 is for refining the toSet operator of relations. The rule is

only written for when the toSet(&rel) expression is in a quantified position. Thanks to

horizontal rules of set domains, set expressions can always be converted to this form. The

output of this rule is a nested quantified expression, quantifying over all items stored in

the underlying two-dimensional matrix. The original guard of the quantified expression is
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6.5. Rules for partitions domains

1 ; Rela t ion~AsSet
2 ; s e t ( &attributes ) of (&t_1, &t_2, . . . )
3

4 ∗∗∗ r e l a t i o n ( &attributes ) of (&t_1, &t_2, . . . )

Figure 6.28: Using sets to model relations

translated to work with the new quantifiers and a new guard is posted to ensure that the

body is only relevant when the relation contains the quantified variables j1 and j2.

6.4.2 Using sets to model relations

This representation works by converting a relation into a set of tuples. The representation

selection rule needs to work for relation domains with any arity, and the rule language does

not support this. As a result, the rule in implemented as a built-in rule and not in the rule

language. The rule given in Figure 6.28 is for illustrative purposes only.

Internally, this rule is very simple. It only has one case as it works on any relation

domain. It simply propagates all the attributes of the relation down to the set representation

and converts all the components of the relation domain into components of a tuple domain

that is wrapped inside the set domain.

Vertical rules of this representation are implemented internally to Conjure and not in

the rule language.

6.5 Rules for partitions domains

6.5.1 Representing partitions using a multi-set of sets

This representation uses a multi-set of sets to model partitions. The outer multi-set models

the separate parts of the partition, and the inner set models each part of the partition.

The implementation of this representation is separated into 3 rules, given in Figure 6.29,

Figure 6.30, and Figure 6.31. The separation is required because even though each rule

generates the same type, they generate different domains. When a size or partSize
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1 ; P a r t i t i o n ~MSetOfSets
2 ; mset of s e t of &tau
3

4 ∗∗∗ p a r t i t i o n from &tau
5 ; ( f o r A l l i , j in refn , i != j . | i i n t e r s e c t j | = 0 )
6 /\ ( f o r A l l i : &tau . e x i s t s s in re fn . i in s )

Figure 6.29: Representing partitions using a multi-set of sets - no size

1 ; P a r t i t i o n ~MSetOfSets
2 ; mset ( s i z e &n) of s e t of &tau
3

4 ∗∗∗ p a r t i t i o n ( s i z e &n) from &tau
5 ; ( f o r A l l i , j in refn , i != j . | i i n t e r s e c t j | = 0 )
6 /\ ( f o r A l l i : &tau . e x i s t s s in re fn . i in s )

Figure 6.30: Representing partitions using a multi-set of sets – outer size known

1 ; P a r t i t i o n ~MSetOfSets
2 ; mset ( s i z e &n) of s e t ( s i z e &m) of &tau
3

4 ∗∗∗ p a r t i t i o n ( s i z e &n , p a r t S i z e &m, . . ) from &tau
5 ; ( f o r A l l i , j in refn , i != j . | i i n t e r s e c t j | = 0 )
6 /\ ( f o r A l l i : &tau . e x i s t s s in re fn . i in s )
7

8 ∗∗∗ p a r t i t i o n ( regular , s i z e &n) from &tau
9 ; ( f o r A l l i , j in refn , i != j . | i i n t e r s e c t j | = 0 )

10 /\ ( f o r A l l i : &tau . e x i s t s s in re fn . i in s )
11 l e t t i n g &m be domSize ( &tau ) / &n
12

13 ∗∗∗ p a r t i t i o n ( regular , p a r t S i z e &m) from &tau
14 ; ( f o r A l l i , j in refn , i != j . | i i n t e r s e c t j | = 0 )
15 /\ ( f o r A l l i : &tau . e x i s t s s in re fn . i in s )
16 l e t t i n g &n be domSize ( &tau ) / &m

Figure 6.31: Representing partitions using a multi-set of sets – both outer and inner sizes
known
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6.5. Rules for partitions domains

1 [ 1 0 0 0 ]
2

3 &quan &i in p a r t s (&p) , &g . &k
4 ;

5 &quan &i in re fn (&p) , &g . &k
6 where &p hasType ‘ p a r t i t i o n from _ ‘
7 where &p hasRepr MSetOfSets

Figure 6.32: Vertical rule for the parts operator on partitions

attribute is given for the partition, these attributes are propagated to the outer multi-set and

the inner set as size attributes respectively.

The structural constraint in Figure 6.29 is composed of two parts. The first part of it

posts the condition that parts of a partition are disjoint. The second part of it posts the

condition that every value in &tau needs to occur in a part.

The structural constraint in Figure 6.30 is exactly the same as that of Figure 6.29. The

domain pattern in the case has a size attribute which is used as the size attribute of the

outer multi-set.

The representation selection rule in Figure 6.31 lists 3 cases. The first case has both

a size and a partSize attribute. The size attribute is used as the size attribute of the

outer multi-set and the partSize attribute is used as the size attribute of the inner set. The

second case does not have a partSize attribute, but it has the regular attribute. The value

of partSize is calculated using the value of the size attribute and the domain size of &tau.

The third case does not have a size attribute, but it has the regular attribute. The value of

size is calculated using the value of the partSize attribute and the domain size of &tau.

6.5.1.1 Vertical rules

The rule given in Figure 6.32 is used for the refinement of the parts operator. The quantific-

ation over the parts of a partition is simply turned into a quantification over the underlying

multi-set which is used to represent the partition.
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6.6 Horizontal rules

Horizontal rules do not change the level of abstraction of abstract decision variables. In

other words, they do not make use of representation decisions. For example, a horizontal

rule applied to an expression involving a decision variable with a function domain will

always perform the same rewrite independent of the representation of the decision variable.

Horizontal rules are very useful in enabling Conjure’s complete coverage of the Essence

language. Essence contains numerous operators operating on abstract decision variables.

These operators let the user of Essence write concise problem specifications.

Most operators in Essence can be defined in terms of other operators in the language.

A simple example to this is the super-set (⊃) operator for sets, which is an arguments

flipped version of the subset operator (⊂) for sets. A slightly more involved example is set

equality (=), which can be viewed as a conjunction of two operators, subset-or-equal (⊆)

and superset-or-equal (⊇) for set.

Horizontal rules provide a correct way to refine many operators. They reduce the

number of operators and language constructs that are required to be implemented via

vertical rules. Reducing the need for vertical rules is important because vertical rules are

defined depending on specific representations and adding a new representation requires

the addition of vertical rules.

In the rest of this section some example horizontal rules are given.

6.6.1 Horizontal rules for set domains

This subsection gives some of the most important horizontal rules for set domains.

6.6.1.1 Set cardinality

Figure 6.33 gives the generic rule for set cardinality. It makes use of a sum quantified

expression over the set variable.
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1 [ 1 0 0 0 ]
2

3 |&s| ; sum i in &s . 1
4 where &s hasType ‘ s e t of _ ‘

Figure 6.33: Set cardinality

1 [ 5 0 0 ]
2

3 |&s| ; &size_
4 where &s hasDomain ‘ s e t ( s i z e &size_ , . . ) of _ ‘

Figure 6.34: Set cardinality for fixed size sets

1 [ 1 0 0 0 ]
2

3 &a = &b ; &a subsetEq &b /\ &a supsetEq &b
4 where &a hasType ‘ s e t of _ ‘
5 where &b hasType ‘ s e t of _ ‘

Figure 6.35: Set equality to subsets

6.6.1.2 Set cardinality for fixed size sets

Figure 6.34 gives a better rule for sets with a size attribute attached to their domains. It uses

the hasDomain predicate of the rule language to extract the value of the size attribute. The

replacement expression does not contain a reference to the original decision variable any

more. This rule is especially useful, because expressions involving the cardinality operator

will be generated by other rules and they can be compiled away for fixed size sets.

6.6.1.3 Set equality to subsets

Figure 6.35 gives a rule which replaces a set equality expression with a conjunction of

two expressions one using subsetEq and one using supsetEq. This is almost a textbook

definition of set equality, it is trivially correct and can be used by all set representations.
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1 [ 9 0 0 ]
2

3 &a = &b
4 ;

5 ( f o r A l l i : &t1 . i in &a <−> i in &b) /\
6 ( f o r A l l i : &t2 . i in &a <−> i in &b)
7 where &a hasDomain ‘ s e t ( . . ) of &t 1 ‘
8 where &b hasDomain ‘ s e t ( . . ) of &t 2 ‘
9 where &t1 hasType ‘ in t ‘

10 where &t2 hasType ‘ in t ‘

Figure 6.36: Set equality: an alternative

1 [ 1 0 0 0 ]
2

3 &e in &s ; e x i s t s j in &s . j = &e
4 where &s hasType ‘ s e t of _ ‘

Figure 6.37: Set membership

6.6.1.4 Set equality: an alternative

Figure 6.36 gives an alternative rule to handle set equality. This rule is potentially much

better than the rule in Figure 6.35 however it is only applicable if both operands are sets

of integers. The rule in Figure 6.35 is more widely applicable since it does not have any

guards on the actual domain of the operands. Since this horizontal rule given better models

in general it is placed at a lower level than the other one. This stops Conjure from applying

both rules and generating alternative models, instead Conjure tries to apply the more

specific rule when it can and only uses the more generic rule otherwise. For experimentation

purposes the level of this rule can be changed to 1000, which will force Conjure to create

models using both rules.

6.6.1.5 Set membership

Set membership can be represented using an exists quantifier over the set. The rule given

in Figure 6.37 implements this transformation.
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1 [ 1 0 0 0 ]
2

3 &a subset &b ; &a subsetEq &b /\ &a != &b
4 where &a hasType ‘ s e t of _ ‘
5 where &b hasType ‘ s e t of _ ‘

Figure 6.38: Strict subset in terms or subset-or-equal and inequality of sets

1 [ 1 0 0 0 ]
2

3 &a subset &b ; &a subsetEq &b /\ |&a| < |&b|
4 where &a hasType ‘ s e t of _ ‘
5 where &b hasType ‘ s e t of _ ‘

Figure 6.39: Strict subset in terms or subset-or-equal and cardinality comparison

1 [ 1 0 0 0 ]
2

3 &a subsetEq &b ; f o r A l l i in &a . i in &b
4 where &a hasType ‘ s e t of _ ‘
5 where &b hasType ‘ s e t of _ ‘

Figure 6.40: Subset-or-equal in terms of quantified expressions

6.6.1.6 Subset and related operators

Figure 6.38 gives a rule which implements the strict subset operator in terms of the

subsetEq operator. This rule produces a conjunction of two constraints and posts the

additional condition that the sets are distinct. Figure 6.39 gives an alternative rule to

implement the same subset operator. In this rule, instead of introducing a complicated set

inequality constraint, cardinalities of the two sets are constrained. This can be particularly

powerful if one or both of the sets have a fixed cardinality. Because if that is the case, the

rule in Figure 6.34 will lookup the statically known cardinalities of the sets and produce a

much smaller constraint than its alternative. Figure 6.40 gives a rule which turns a subsetEq

operator into a quantified expression. Other subset related operators, like supset and

supsetEq are implemented similarly.
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6. The Rules of Conjure

1 [ 1 0 0 0 ]
2

3 e x i s t s &i in &a union &b , &guard . &body
4 ;

5 ( e x i s t s &i in &a , &guard . &body) \/
6 ( e x i s t s &i in &b , &guard . &body)
7 where &a hasType ‘ s e t of _ ‘
8 where &b hasType ‘ s e t of _ ‘

Figure 6.41: exists quantification over sets

1 [ 1 0 0 0 ]
2

3 max(&a union &b) ; max(max(&a) , max(&b) )
4 where &a hasType ‘ s e t of _ ‘
5 where &b hasType ‘ s e t of _ ‘

Figure 6.42: Maximum of the union of two sets

6.6.1.7 exists quantification over sets

Figure 6.41 gives a rule which handles the case when the input expression in an existential

quantification over the union of two sets. It separates the quantified expression into two

quantified expression one for each set operand of the union; and the two expressions are

combined using a disjunction. This way, the rule avoids introducing an auxiliary decision

variable with a set domain.

6.6.1.8 Set max operator

Figure 6.42 gives a rule which handles the case when the max operator is applied to the

union of two set expressions. It implements this operator by using the max operator defined

on integers, which takes two integers and evaluates to the maximum value out of these

two. On the other hand, Figure 6.43 gives a rule which works by introducing an auxiliary

decision variable. The decision variable aux has the same domain as the elements of the set,

and it is constrained to be greater than or equal to each element in the set.
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1 [ 1 0 0 0 ]
2

3 max( &s ) ; { aux
4 @ find aux : &tau
5 such t h a t
6 f o r A l l i in &s . i <= aux ,
7 aux in &s
8 }
9 where &s hasDomain ‘ s e t ( . . ) of &tau ‘

Figure 6.43: Maximum value in an atomic set

1 [ 1 0 0 0 ]
2

3 |&s| ; sum i in &s . 1
4 where &s hasType ‘ mset of _ ‘

Figure 6.44: Cardinality of multi-sets

6.6.2 Horizontal rules for multi-set domains

This subsection gives some of the most important horizontal rules for set domains.

6.6.2.1 Cardinality of multi-sets

Figure 6.44 gives the horizontal rule which refines the cardinality operator. The rule is very

similar to one of the set cardinality rules, however the type pattern in the guard is different

in this rule.

Several rules will be omitted here because of their similarity to the set rules. For example:

rules for handling subset, supset, supsetEq, multi-set equality are omitted.

6.6.3 Multi-set frequency operator

Figure 6.45 gives the rule which implements the freq operator on multi-sets in terms of a

sum quantified expression. freq(m,x) returns the number of occurrences of the value x in

the multi-set m, and this refinement rule directly follows the definition of the operator.
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1 [ 1 0 0 0 ]
2

3 f r e q (&m,&x) ; sum i in &m . t o I n t ( i = &x)
4 where &m hasType ‘ mset of _ ‘

Figure 6.45: Frequency operator freq of multi-sets

1 [ 1 0 0 0 ]
2

3 &a subsetEq &b ; ( f o r A l l i in &a . f r e q (&a , i ) <= f r e q (&b , i ) )
4 /\ ( f o r A l l i in &b . f r e q (&a , i ) <= f r e q (&b , i ) )
5 where &a hasType ‘ mset of _ ‘
6 where &b hasType ‘ mset of _ ‘

Figure 6.46: Subset-or-equal for multi-set domains

1 [ 1 0 0 0 ]
2

3 |&f| ; | t o S e t ( &f )|
4 where &f hasType ‘ funct ion _ −−> _ ‘

Figure 6.47: Cardinality of a function

6.6.3.1 Subset-or-equal for multi-set domains

Figure 6.46 gives the rule which implements subsetEq for multi-set domains. This refine-

ment rule is considerably different from the corresponding refinement rule for set domains

because it needs to make sure not only that every value in the first multi-set is in the second

multi-set, but also that the number of occurrences of those values line up properly. The rule

makes use of a forAll quantified expression and the freq operator to this effect.

6.6.4 Horizontal rules for function domains

This subsection gives some of the most important horizontal rules for function domains.
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1 [ 8 0 0 ]
2

3 &f (&x) = &y ; f o r A l l i in t o S e t ( &f ) , i [ 1 ] = &x . i [ 2 ] = &y
4 where &f hasType ‘ funct ion _ −−> _ ‘

Figure 6.48: Function application in an equality context

6.6.4.1 Cardinality of a function

Figure 6.47 gives the rule which implements cardinality of function expressions. It is very

simple to get a correct implementation of cardinality of functions, because functions have a

toSet operator defined on them. The cardinality of a function is equal to the cardinality of

the set representation of the same function.

6.6.4.2 Function application in an equality context

This rule, Figure 6.48 is only applicable when the original expression is in the form of an

equality and has as one of its operands a function application. It works by producing a

quantified expression over the function variable, more accurately over the set representation

of the function variable. In the body of the quantified expression i is a tuple which

represents a mapping. The second component of this tuple is constrained to be equal to &y,

only when the first component is equal to &x.

6.6.4.3 Quantify over defined values in a function

Figure 6.49 gives a very important horizontal rule. Writing quantified expressions over

all values that are defined for a function variable is very common. Thankfully, it can be

implemented using a quantification over the set representation of a function variable. This

way each function representation only needs to give a vertical rule for the toSet operator,

and the defined operator works without any more work.
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1 [ 1 0 0 0 ]
2

3 &quan &i in defined ( &f ) , &g . &b
4

5 ;

6

7 &quan j in t o S e t ( &f ) , &g { &i −−> j [ 1 ] }
8 . &b { &i −−> j [ 1 ] }
9

10 where &f hasType ‘ funct ion _ −−> _ ‘

Figure 6.49: Quantify over defined values in a function

1 [ 1 0 0 0 ]
2

3 &f = &g ; f o r A l l i in defined ( &f ) . &f ( i ) = &g( i )
4 where &f hasType ‘ funct ion _ −−> _ ‘
5 where &g hasType ‘ funct ion _ −−> _ ‘

Figure 6.50: Equality of functions

1 [ 1 0 0 0 ]
2

3 inverse ( &f , &g)
4 ;

5 ( f o r A l l i in t o S e t ( &f ) . ( i [ 2 ] , i [ 1 ] ) in t o S e t (&g) )
6 /\
7 ( f o r A l l i in t o S e t (&g) . ( i [ 2 ] , i [ 1 ] ) in t o S e t ( &f ) )
8 where &f hasType ‘ funct ion _ −−> _ ‘
9 where &g hasType ‘ funct ion _ −−> _ ‘

Figure 6.51: Function inverse

6.6.4.4 Equality of functions

Figure 6.50 gives a rule which makes use of quantification over defined values of a function.

In order for &f and &g to be equal, for all values &f is defined for, &g needs to be map the

same value to the same result.
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1 [ 1 0 0 0 ]
2

3 &a = &b ; t o S e t (&a) = t o S e t (&b)
4 where &a hasType ‘ r e l a t i o n ‘
5 where &b hasType ‘ r e l a t i o n ‘

Figure 6.52: Relation equality

1 [ 1 0 0 0 ]
2

3 &a in &b ; &a in t o S e t (&b)
4 where &b hasType ‘ r e l a t i o n ‘

Figure 6.53: Relation membership

6.6.4.5 Function inverse

Figure 6.51 gives a rule which refines the inverse operator on functions. This operator takes

two functions as arguments and evaluates to a boolean, indicating whether the two functions

are inverses of one another or not. The implementation of this rule uses quantification

over the set representation of both functions and checks for membership in the body of the

quantified expressions.

6.6.5 Horizontal rules for relation domains

This subsection gives some of the most important horizontal rules for relation domains.

Many operators on relation domains treat relations as set-like containers. Hence, most

of the horizontal rules implement their required functionality using existing set operators.

6.6.5.1 Relation equality

Figure 6.52 gives a rule for relation equality. This rule is implemented by checking for

equality between the set representations of both relations.
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1 [ 1 0 0 0 ]
2

3 &a = &b ; ( f o r A l l i in p a r t s (&a) . i in p a r t s (&b) ) /\
4 ( f o r A l l i in p a r t s (&b) . i in p a r t s (&a) )
5 where &a hasType ‘ p a r t i t i o n from _ ‘
6 where &b hasType ‘ p a r t i t i o n from _ ‘

Figure 6.54: Partition equality

6.6.5.2 Relation membership

In a similar manner to other horizontal rules for relation domains, the rule given by

Figure 6.53 is implemented in terms of the set representation of the relation.

6.6.6 Horizontal rules for partition domains

Partition domains generally act like nested set domains. The operators defined on partitions

are mostly set operators and those are handled using the horizontal rules for sets.

This subsection gives one example horizontal rules for partition domains.

This rule, Figure 6.54, implements equality checking between two partition expressions.

The implementation of the rule uses a quantification over the parts of a partition. The

parts operator returns a set of parts of the partition, moreover each part is also a set of

item contained in the partition. In the body of the quantified expressions, set membership

operator is used to check whether a part of one partition is also a part of another partition.

Partitions are considered equal if they contain the same parts.

6.6.7 Horizontal rules for decomposition

Horizontal rules can be used to give decompositions of global constraints, too. As an

example, Figure 6.55 gives the decomposition for the allDiff constraint. The rule is very

simple, it merely gives the decomposition of allDiff into a clique of inequality constraints

using the familiar Essence syntax with meta-variables. It also uses guards to control when

this rule is applicable: it is generally not desired to decompose allDiff when the argument
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6.7. Summary

1 a l l D i f f (&m) ; f o r A l l i , j : &r , i < j . &m[ i ] != &m[ j ]
2 where ! (&m hasType ‘ matrix indexed by [ _ ] of in t ‘ )
3 where &m hasDomain ‘ matrix indexed by [ &r ] of _ ‘

Figure 6.55: Decomposition of allDiff

is a matrix of integers. However, since the output language Essence
′ does not contain

allDiff for any other type other than integers, allDiff on all other types need to be

decomposed into a clique of inequalities. If the matrix contains abstract domains in it, the

generated inequality constraints will be further refined using other rules.

6.7 Summary

This chapter gave a listing of rules of Conjure. The first part of the chapter contains a

section for each abstract type of Essence, and each section contains a subsection for each

representation option. The second part of the chapter contains a listing of an interesting

subset of of the horizontal rules. Horizontal rules are representation independent and they

do a lot of hard work: Thanks to having horizontal rules, each representation needs to

provide a very small number of vertical rules.
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Chapter 7

Extensibility

This chapter demonstrates the extensibility of Conjure by giving two complete examples of

adding new representations: one for set domains and one for function domains.

7.1 Adding the Gent representation

The Gent representation [Jef+05] was designed to try to combine the strengths of the

occurrence and explicit representations. It works for set of integers using a one-dimensional

matrix. Items in the matrix take values from 0 to maximum possible cardinality of the

set. The membership of an index value of the matrix is denoted by a non-zero item in the

corresponding position. i.e., i is considered to be in the set if and only if M[i] > 0, if M is

the Gent representation of a set variable.

Moreover, the Gent representation requires an additional condition. The non-zero value

denoting membership cannot be just a free non-zero integer, the non-zero items in the matrix

has to be in a strictly increasing order.

The rule given in Figure 7.1 is the representation selection rule for Gent representation.

It contains 4 cases, and omits the cases where the set cardinality is known. In the first two

of these cases, the maxSize value is immediately available as a part of the domain, in the

last two cases it can be calculated using the domSize operator on the inner domain &tau. In

the first and the third case, the minSize attribute is given as a part of the domain. In these
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1 ; Set~Gent
2 ; matrix indexed by [ &tau ] of i n t ( 0 . . &maxSize_)
3 ; f o r A l l i : &tau .
4 ( re fn [ i ] = 0) \/
5 ( re fn [ i ] = 1 + sum j : &tau , j < i /\ re fn [ j ] > 0 . 1 )
6

7 where &tau hasType ‘ in t ‘
8

9 ∗∗∗ s e t ( minSize &minSize_ , maxSize &maxSize_) of &tau
10 ; &minSize_ <= sum i : &tau . t o I n t ( re fn [ i ] != 0 )
11

12 ∗∗∗ s e t ( maxSize &maxSize_) of &tau
13

14 ∗∗∗ s e t ( minSize &minSize_) of &tau
15 ; &minSize_ <= sum i : &tau . t o I n t ( re fn [ i ] != 0 )
16 l e t t i n g &maxSize_ be domSize ( &tau )
17

18 ∗∗∗ s e t of &tau
19 l e t t i n g &maxSize_ be domSize ( &tau )

Figure 7.1: Representation selection rule for Gent representation of sets.

cases, additional structural constraints are posted to require this condition.

The output domain from this rule is, as required by the definition of the representation,

a one-dimensional matrix domain indexed by &tau. &tau is the meta-variable for matching

the inner part of a set domain. The elements of the matrix have an integer domain from o

up to maximum cardinality. The structural constraint posts the condition that for each index

i in the matrix, the value of refn[i] has to be either 0 indicating that i is not a member of

the set; or it has to be equal to the number of non-zero items in the matrix up to this point

plus one. This structural constraint ensures the main invariant of the Gent representation,

that the non-zero values in the matrix has to be in strictly increasing order.

The rule given in Figure 7.2 is used when refining quantified expressions over sets

represented using the Gent representation. In this rule the quantified variable &i in the

input expression takes values from the elements of the set. In the output &i takes values

from the indices of the Gent matrix. However, this does not present a problem because

the two domains are the same. The original guard part of the input expression is kept
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7.1. Adding the Gent representation

1 [ 1 0 0 0 ]
2

3 &quan &i in &s , &guard . &body
4 ;

5 &quan &i : &t , &guard /\ &m[ &i ] > 0 . &body
6 where &s hasDomain ‘ s e t ( . . ) of &t ‘
7 where &s hasRepr Set~Gent
8 l e t t i n g &m be re fn ( &s )

Figure 7.2: Vertical rule for Quantified expressions and the Gent representation of sets

1 [ 9 0 0 ]
2

3 &x in &s ; re fn ( &s ) [ &x] > 0
4 where &s hasRepr Set~Gent

Figure 7.3: Vertical rule for better membership check in the Gent representation

unchanged and a new guard is posted. This new guard makes sure that the body part of

the quantified expression is only used then &i is indeed found in the set.

For example the expression « forAll i in a, i > 3 . i in b » will be refined to

« forAll i : int(..) , i > 3 /\a’[i] > 0 . i in b » using this rule, where a’ is

the refinement of a.

This is sufficient to refine all set operators, thanks to horizontal rules for set domains

(Section 6.6.1). However, some operators can be refined to better constraints once they

are specialised to the Gent representation. One example of such an operator is in, the

membership predicate for sets.

The rule given in Figure 7.3 is a vertical rule for better handling the set membership

operator, in. It simply checks the name of the representation for &s and produces the output

expression using a matrix dereference and checking for whether the value if positive or

not. Without this rule Conjure would still produce a correct refinement of the in operator.

However then, it would have to generate a more verbose expression and several unnecessary

constraints.

For example the expression « x in a » will be refined to « a’[x] > 0 » using this rule,
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1 language Essence 1 . 3
2 f ind a , b : s e t ( minSize 2 , maxSize 4) of i n t ( 0 . . 9 )
3 f ind c : s e t ( minSize 3 , maxSize 4) of i n t ( 0 . . 9 )
4 such t h a t c subsetEq a union b , 1 in a

Figure 7.4: Example problem using set variables.

1 language ESSENCE’ 1 . 0
2

3 f ind a_SetGent , b_SetGent , c_SetGent :
4 matrix indexed by [ i n t ( 0 . . 9 ) ] of i n t ( 0 . . 4 )
5 such t h a t
6 f o r A l l i : i n t ( 0 . . 9 ) .
7 c_SetGent [ i ] > 0
8 −>
9 ( e x i s t s j : i n t ( 0 . . 9 ) . a_SetGent [ j ] > 0 /\ j = i )

10 \/
11 ( e x i s t s j : i n t ( 0 . . 9 ) . b_SetGent [ j ] > 0 /\ j = i ) ,
12 a_SetGent [ 1 ] > 0 ,
13 . . .

Figure 7.5: Example problem using set variables, refined using Gent representation.

where a’ is the refinement of a. Without this rule it would have been refined to

« exists i : int(..) . a’[i] > 0 . x = 4 ».

7.1.1 Example

This section gives a simple problem specification which has three set variables and only

one constraint. The Essence specification is given in Figure 7.4. The final model using the

Gent representation for all three set decision variables if given in Figure 7.5. The structural

constraints are left out from this model to focus on the refinement of the original constraint.

It takes 6 rule applications for the constraint to be fully refined. In what follows, the

inputs and outputs of each step is given in successive figures, see Figures 7.6 to 7.12. These

figures are takes directly out of Conjure and the identifier names starting with “v__” are

auto-generated unique names as described in Section 5.7.
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1 c subsetEq a union b
2 ;

3 ( f o r A l l v__10 in c . v__10 in a union b )

Figure 7.6: Step 1: Applying rule Figure 6.40

1 v__10 in a union b
2 ;

3 ( e x i s t s v__11 in a union b . v__11 = v__10 )

Figure 7.7: Step 2: Applying rule Figure 6.37

1 ( e x i s t s v__11 in a union b . v__11 = v__10 )
2 ;

3 ( e x i s t s v__11 in a . v__11 = v__10 ) \/
4 ( e x i s t s v__11 in b . v__11 = v__10 )

Figure 7.8: Step 3: Applying rule Figure 6.41

7.2 A new representation for partial function domains

This section presents a new representation for partial function domains: 1DPartial. Func-

tion domains are used to model mappings between two sets: the defined and the range set.

The 1DPartial representation is specialised to partial function domains where the defined

set is of type integer. It uses a matrix which contains an entry for every possible mapping in

the function domain together with a boolean marker denoting whether the entry should be

regarded as a part of the final value of the function or not.

The rule given in Figure 7.13 is part of the representation selection rule for 1DPartial.

This rule doesn’t contain cases for when the function domain has a total attribute; because

for total function domains, the representation using a one-dimensional array without boolean

1 ( e x i s t s v__11 in a . v__11 = v__10 )
2 ;

3 ( e x i s t s v__12 : i n t ( 0 . . 9 ) , a_Set~Gent [ v__12 ] > 0 . v__12 = v__10 )

Figure 7.9: Step 4: Applying rule Figure 7.2
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1 ( e x i s t s v__11 in b . v__11 = v__10 )
2 ;

3 ( e x i s t s v__13 : i n t ( 0 . . 9 ) , b_Set~Gent [ v__13 ] > 0 . v__13 = v__10 )

Figure 7.10: Step 5: Applying rule Figure 7.2

1 ( f o r A l l v__10 in c .
2 ( e x i s t s v__12 : i n t ( 0 . . 9 ) , a_Set~Gent [ v__12 ] > 0
3 . v__12 = v__10 ) \/
4 ( e x i s t s v__13 : i n t ( 0 . . 9 ) , b_Set~Gent [ v__13 ] > 0
5 . v__13 = v__10 ) )
6 ;

7 ( f o r A l l v__14 : i n t ( 0 . . 9 ) , c_Se t~Gent [ v__14 ] > 0 .
8 ( e x i s t s v__12 : i n t ( 0 . . 9 ) , a_Set~Gent [ v__12 ] > 0
9 . v__12 = v__14 ) \/

10 ( e x i s t s v__13 : i n t ( 0 . . 9 ) , b_Set~Gent [ v__13 ] > 0
11 . v__13 = v__14 ) )

Figure 7.11: Step 6: Applying rule Figure 7.2 once more

1 1 in a ; a_Set~Gent [ 1 ] > 0

Figure 7.12: Step 7: Applying rule Figure 7.3 once more

markers – as given in Figure 6.18 – is superior.

This representation requires the addition of 2 vertical rules. The first vertical rule is

given in Figure 7.14, and it handles the function application operator. It uses bubbles as

described in Section 5.6 to post a constraint on the boolean marker for when the value in

the second component of the tuple is referenced. Then automatic handling of bubbles by

Conjure makes sure that the function is defined when needed. The second vertical rule is

given in Figure 7.15 and handles quantification over all the mappings in an with a function

domain. The guard (&g) and the body (&b) of the input expression are modified to use the

new quantifier variable k. Moreover, an additional guard is posted so those values which

contain a false marker are filtered out.
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1 ; Function ~1 DPar t ia l
2 ; matrix indexed by [ &fr ] of ( bool , &to )
3 where &fr hasType ‘ in t ‘
4

5 ∗∗∗ func t ion &fr −−> &to
6

7 ∗∗∗ func t ion ( i n j e c t i v e ) &fr −−> &to
8 ; f o r A l l i , j : &fr , i != j /\ re fn [ i , 1 ] /\ re fn [ j , 1 ]
9 . r e fn [ i , 2 ] != re fn [ j , 2 ]

10

11 ∗∗∗ func t ion ( s u r j e c t i v e ) &fr −−> &to
12 ; f o r A l l i : &to . e x i s t s j : &fr , re fn [ j , 1 ] . re fn [ j , 2 ] = i
13

14 . . .

Figure 7.13: Representation selection rule for 1DPartial representation of functions.

1 &f (&x) ; { re fn ( &f ) [ &x , 2 ] @ such t h a t re fn ( &f ) [ &x , 1 ] }
2 where &f hasType ‘ funct ion i n t −−> _ ‘
3 where &f hasRepr Function ~1 DPar t ia l

Figure 7.14: Vertical rule for function application and the 1DPartial representation

1 &quan &i in t o S e t ( &f ) , &g . &b
2 ;

3 &quan k : &domFrom
4 , &g { &i [ 1 ] −−> k , &i [ 2 ] −−> &m[ k , 2 ] } /\ &m[ k , 1 ]
5 . &b { &i [ 1 ] −−> k , &i [ 2 ] −−> &m[ k , 2 ] }
6 where &f hasType ‘ funct ion i n t −−> _ ‘
7 where &f hasDomain ‘ funct ion ( . . ) &domFrom −−> _ ‘
8 where &f hasRepr Function ~1 DPar t ia l
9 l e t t i n g &m be re fn ( &f )

Figure 7.15: Vertical rule for the toSet operator and the 1DPartial representation
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1 language Essence 1 . 3
2

3 given n : i n t
4 l e t t i n g ROW, COL be domain i n t ( 1 . . n )
5

6 f ind queenAtRow : funct ion ( i n j e c t i v e ) ROW −−> COL
7

8 minimising |queenAtRow|
9

10 such t h a t
11 f o r A l l ( r1 , c1 ) , ( r2 , c2 ) in t o S e t ( queenAtRow )
12 , r1 < r2
13 . |c1−c2| != |r1−r2 | ,
14

15 f o r A l l r : ROW
16 , ! ( r in defined ( queenAtRow ) )
17 . f o r A l l c : COL .
18 ( e x i s t s r2 : ROW , r != r2 . queenAtRow ( r2 ) = c ) \/
19 ( e x i s t s r2 : ROW , r != r2 . |queenAtRow ( r2 ) − c| = |r2 − r |)

Figure 7.16: The Essence specification of the Dominating Queens problem

7.2.1 The Dominating Queens Problem

An Essence problem specification for the Dominating Queens Problem[Gib+97] is given in

Figure 7.16. This problem specification contains a single decision variable which has a partial

function domain. Hence its refinement can use the newly added 1DPartial representation

for partial function domains.

The problem is placing the minimum number of queens of a chess board such that no

two queens attack each other and at least one queen attacks every empty cell.

In the problem specification, the decision variable queenAtRow possibly contains an entry

for every row. If it does contain an entry, the image of the function is the column at which a

queen is present, if it doesn’t the row doesn’t contain any queens. The injective attribute

on the domain of queenAtRow posts the constraint that queens need to be placed on separate

columns. The problem has 2 constraints. The first constraint makes sure that the queens are

not on the same diagonal. The second constraint makes sure for all rows without a queen,
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1 language ESSENCE’ 1 . 0
2

3 given n : i n t
4 f ind queenAtRow_active : matrix indexed by [ i n t ( 1 . . n ) ] of bool
5 f ind queenAtRow_value : matrix indexed by [ i n t ( 1 . . n ) ] of i n t ( 1 . . n )
6 minimising sum i : i n t ( 1 . . n ) . t o I n t ( queenAtRow_active [ i ] )
7 such t h a t
8 f o r A l l i , j : i n t ( 1 . . n ) .
9 ( i != j /\ queenAtRow_active [ i ] /\ queenAtRow_active [ j ] )

10 −> ( queenAtRow_value [ i ] != queenAtRow_value [ j ] ) ,
11 . . .

Figure 7.17: The Essence
′ model for the Dominating Queens problem using the 1DPartial

representation

and for all cells on such a row there must be a queen at the same column or at a diagonal

attacking this empty cell. Conjure generates the Essence
′ model partly given in Figure 7.17

using the 1DPartial representation.

7.3 Summary

This chapter demonstrates how easy it is to add two new representation from scratch. In

order to have a fully working variable representation in the first representation, we only had

to provide one representation decision rule and one vertical rule for handling quantified

expressions. In addition, we have also seen how to provide a specialised rule for the in

operator and placed it at a lower precedence level than the usual 1000. This means the rule

given in Figure 7.3 will be applied before applying the horizontal rule Figure 6.37. Com-

paring Figure 7.7 and Figure 7.12 is a good example showing this precedence mechanism

in action: the former uses the generic rule because the right-hand side is not an atomic set

variable with the Gent representation and the latter uses the more specific rule because a is

an atomic set variable represented using the Gent representation. The second newly added

representation is one for function domains, and in particular partial function domains. This

representation improves on Figure 6.21 in the particular case when the defined set is of
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type integer. Two vertical rules are also presented for this representation in order to have a

fully working variable representation.
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Chapter 8

Symmetry Breaking

This chapter explains an automated symmetry breaking technique implemented in Conjure.

In short, this technique works by introducing two operators ≤̇ and <̇ for ordering abstract

decision variables of Essence. Structural constraints of representation selection rules are

then modified to make use of these operators to eliminate symmetry as soon as it enters the

model. The technique applies to arbitrarily nested symmetries and represents a significant

step forward for automated constraint modelling.

Many constraint problems contain symmetry, which can lead to redundant search

[Gen+99; Fle+02b]. If a partial assignment is shown to be invalid, the solver will be wasting

time if it ever considers a symmetric equivalent of it. Much symmetry enters constraint

models through the process of constraint modelling [Fri+03]. Conjure exploits this by

breaking symmetry as it enters the model. This obviates the need for an expensive symmetry

detection step following model formulation, as used by other approaches [Man+05; Mea+11].

The added symmetry breaking constraints hold for the entire parameterised problem class

— not just a single problem instance.

8.1 Breaking symmetry as soon as it enters the model

Symmetry enters constraint models in two ways. Some problems have inherent symmetries,

which if not broken get reflected in the model. Other symmetries are introduced by the
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1 given w, g , s : i n t ( 1 . . )
2 l e t t i n g Gol fers be new type of s i z e g ∗ s
3 f ind sched : s e t ( s i z e w) of
4 p a r t i t i o n ( regular , s i z e g ) from Gol fers
5

6 such t h a t
7 f o r A l l week1 , week2 in ached , week1 != week2 .
8 f o r A l l group1 in pa r t s ( week1 ) .
9 f o r A l l group2 in pa r t s ( week2 ) .

10 |group1 i n t e r s e c t group2| < 2

Figure 8.1: Essence specification of the Social Golfers Problem

modelling process; in this case a single solution to the problem corresponds to multiple

assignments to the variables of the model. We call these model symmetries. As an example,

consider the Social Golfers Problem (Figure 8.1), which requires finding a set of w partitions.

If this set is modelled as an array indexed by 1..w then all w! permutations of the array

correspond to the same set. This symmetry is introduced when an arbitrary decision is

made about which set element goes in which cell of the array. Similarly, if the g ∗ s Golfers

are modelled by the integers 1..g ∗ s then g ∗ s symmetries are introduced because of the

arbitrary decision of which golfer corresponds to which integer. The problem-specification

language Essence has been designed so that, unlike other modelling languages, problems

can be specified without having to make the arbitrary decisions that introduce model

symmetries.

Our view is that a modeller, human or machine, should be aware of the modelling

decisions it makes and thus know what symmetries it introduced into the model. Indeed,

this should be the case whether modelling an entire problem class or a single problem

instance. Hence there is no need to apply sophisticated methods to the generated model to

detect symmetries introduced by the modelling process.

Frisch et al. [Fri+07] show how each modelling rule of Conjure can be extended to

generate a description of the symmetries it introduces and how the generated descriptions

can be composed to form a description of the symmetries introduced into the model. The
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1 ; Set~ E x p l i c i t ~Sym
2 ; matrix indexed by [ i n t ( 1 . . &n) ] of &tau
3

4 ∗∗∗ s e t ( s i z e &n , . . ) of &tau
5 ; a l l D i f f ( re fn )

Figure 8.2: Representation selection rule without Symmetry breaking

intention was that the resulting description could then be used to generate symmetry-

breaking constraints to add to the model, though these descriptions were never fully

developed into a method for automatically generating symmetry-breaking constraints.

The current version of Conjure takes a different approach to generating symmetry-

breaking constraints: each rule that introduces symmetries also generates a constraint

to break those symmetries. There is only one rule in Conjure which does not break all

symmetry which it introduces – the rule that refines an unnamed type, such as Golfers, to

a range of integers. For unnamed types we do not yet have a general symmetry-breaking

method. We provide total symmetry breaking for all other model symmetries.

To illustrate how Conjure rules can be extended to generate symmetry-breaking con-

straints, consider the rule to build the explicit representation of a set given in Figure 8.2.

This rule transforms a set of a size n into a matrix of with n index values, where each

value in the matrix is a member of the set. A constraint is imposed to ensure that the cells of

the matrix are all different. For any tau other than integers or booleans, we have to further

decompose the allDiff constraint into O(n2) not-equal constraints.

Now consider extending this rule to generate a constraint to break the symmetry it

introduces, that the index values of the matrix can be permuted in any way. The simplest

way to break this symmetry is to impose a total order on the elements of the matrix. As

the elements of the matrix can be any type tau we introduce two new operators, ≤̇ and <̇.

These operators provide a total ordering (and a strict version of the same total ordering) for

all types in Conjure. These orderings are not intended to be “natural” and are not available

to Essence users. They are used only in refinement rules to generate effective symmetry-
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1 ; Set~ E x p l i c i t
2 ; matrix indexed by [ i n t ( 1 . . &n) ] of &tau
3

4 ∗∗∗ s e t ( s i z e &n , . . ) of &tau
5 ; f o r A l l i : i n t ( 1 . . &n−1) . re fn [ i ] . < re fn [ i +1]

Figure 8.3: Representation selection rule with Symmetry breaking

breaking constraints. Using these orderings, the Set~Explicit~Sym rule is modified to a

rule that breaks all the symmetries it introduces. (Figure 8.3)

Rather than introducing a chain of ≤̇ constraints, this rule exploits the fact that the

elements of the set are required to be all different and strengthens the ordering to <̇

constraint. This replaces O(n2) not-equal constraints with only O(n) <̇ constraints.

Other refinement rules can exploit the fact that symmetry breaking is performed im-

mediately to produce more efficient refinements. Consider refining the constraint S = T,

representing S and T as matrices S′ and T′ with the Set~Explicit~Sym representation. To

find if S′ and T′ represent the same set we must check if each element of S′ is equal to

any element of T′, since the order of elements in the matrices can be different. However,

when the Set~Explicit representation is used we know that S = T if and only if S′ = T′,

because each assignment of S is represented by exactly one assignment to S′ that satisfies

the symmetry breaking constraint. This gives a much smaller constraint, which propagates

much more effectively.

We illustrate the new approach to symmetry-breaking by showing how the SGP specific-

ation (Figure 8.1) is refined into a model with symmetry-breaking constraints. We consider

generating only one model. To focus on the issues of concern, we consider only how

the decision variables are refined, ignoring all constraints other than symmetry-breaking

constraints. First, Conjure replaces type of size g*s with int(1..g*s):

1 given w, g , s : i n t ( 1 . . )

2 f ind sched ’ : s e t ( s i z e w) of

3 p a r t i t i o n ( regular , s i z e g ) from i n t ( 1 . . g∗ s )
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After this, Conjure refines the type of the decision variable starting by rewriting the outer

set constructor using the Set~Explicit rule given in the previous section. This generates

the following refinement.

1 given w, g , s : i n t ( 1 . . )

2 f ind sched ’ : matrix indexed by [ i n t ( 1 . .w) ] of

3 p a r t i t i o n ( regular , s i z e g ) from i n t ( 1 . . g∗ s )

4 such t h a t

5 f o r A l l i : i n t ( 1 . . w−1) .

6 sched ’ [ i ] . < sched ’ [ i +1]

This refinement step shows all of the important features of our method. We have

introduced a new, compact constraint which both breaks symmetry, and ensures all members

of the matrix are distinct. We next transform the partition into a set of sets:

1 given w, g , s : i n t ( 1 . . )

2 f ind sched ’ ’ : matrix indexed by [ i n t ( 1 . .w) ] of

3 s e t ( s i z e g ) of s e t ( s i z e ( g∗ s )/g ) of i n t ( 1 . . g∗ s )

4 such t h a t

5 f o r A l l i : i n t ( 1 . . w−1) .

6 sched ’ ’ [ i ] . < sched ’ ’ [ i +1] ,

7 f o r A l l j : i n t ( 1 . . w−1) .

8 f o r A l l k1 , k2 : sched ’ ’ [ j ] , k1 != k2 .

9 | k1 i n t e r s e c t k2 | = 0

This refinement does not appear to have changed the symmetry breaking constraint but

it has in fact been refined from a partition to a set of sets. We have also added a constraint

to impose that each cell of the partition is distinct. As we are just considering symmetry

breaking, we will not consider further this structural constraint, which constrains the sets to

be disjoint. We now apply Set~Explicit again.
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1 given w, g , s : i n t ( 1 . . )

2 f ind sched ’ ’ ’ : matrix indexed by [ i n t ( 1 . .w) , i n t ( 1 . . g ) ] of

3 s e t ( s i z e ( g∗ s )/g ) of i n t ( 1 . . g∗ s )

4 such t h a t

5 f o r A l l i : i n t ( 1 . . w−1) .

6 sched ’ ’ ’ [ i , . . ] . < sched ’ ’ ’ [ i + 1 , . . ] ,

7 f o r A l l j : i n t ( 1 . .w) .

8 f o r A l l k : i n t ( 1 . . g−1) .

9 sched ’ ’ ’ [ j , k ] . < sched ’ ’ ’ [ j , k+1]

The first constraint here is the refined version of the already existing symmetry breaking

constraint. Once again by design the l constraint maps naturally to the matrices used

in refinement. The second constraint is the symmetry breaking on matrix of sets, now

transformed into a matrix of matrices. We use the same refinement rule, even though we

are now refining a set inside a matrix. Conjure automatically deals with the array indices,

and inserts the outer forAll j : int(1..w), in a process called lifting. To finish we apply

Set~Explicit once more, and also change all the <̇ and ≤̇ constraints into their final form –

lexicographic ordering constraints on matrices and ordering on integers.

If we had not broken symmetry immediately, but used the Set~Explicit~Sym repres-

entation, the constraints which impose that each partition in the outermost set is different

would now be very complex, rather than the simple and efficient ordering constraints which

we have generated. This shows the benefit of breaking symmetries as soon as they are

introduced, rather than delaying and using a general technique for symmetry breaking after

model generation is finished.
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1 given w, g , s : i n t ( 1 . . )

2 f ind sched ’ ’ ’ : matrix indexed by [ i n t ( 1 . .w) ,

3 i n t ( 1 . . g ) , i n t ( 1 . . ( g∗ s/g ) ) ] of i n t ( 1 . . g∗ s )

4 such t h a t

5 f o r A l l i : i n t ( 1 . . w−1) .

6 sched ’ ’ ’ [ i , . . , . . ] < l e x sched ’ ’ ’ [ i + 1 , . . , . . ] ,

7 f o r A l l j : i n t ( 1 . .w) .

8 f o r A l l k : i n t ( 1 . . ( g∗ s )/g−1).

9 sched ’ ’ ’ [ j , k , . . ] < l e x sched ’ ’ ’ [ j , k + 1 , . . ] ,

10 f o r A l l j : i n t ( 1 . .w) . f o r A l l k in i n t ( 1 . . g )

11 f o r A l l l : i n t ( 1 . . ( g∗ s )/g−1) .

12 sched ’ ’ ’ [ j , k , l ] < sched ’ ’ ’ [ j , k , l +1]

8.2 Implementation of the ordering operators

The two operators introduced in this chapter are ≤̇ and <̇. Conjure needs to contain

expression refinement rules to implement these operators for the built-in types of Essence

—booleans, integers, enumerated types, tuples and matrices— in addition to the abstract

type constructors. The implementation of these operators depend on the representation of

an abstract type constructor, hence each representation needs to provide vertical rules in

order to handle them.

Booleans, integers and enumerated types are ordered types. Hence the standard ordering

operators < and <= are defined for them. The two symmetry ordering operators, <̇ and ≤̇

are simply implemented using < and <= respectively.

For tuples and matrices, a decomposition of lexicographical ordering is used. That is,

for two tuples a and b of any arity, either the first component of both tuples are ordered or

they are equal and the rest of the tuple is lexicographically ordered. The rest of the tuple
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is handled similarly until reaching a singleton tuple, for which the ordering is the same

as ordering the value in wrapped in the singleton tuple. The <̇ and ≤̇ for matrices are

implemented similarly to tuples.

The implementation of <̇ and ≤̇ for most representations is straightforward since they

can reuse the corresponding operator from the underlying representation. The following

vertical rule together with appropriate where statements is used for the implementation of <̇:

&a .< &b ; refn(&a) .< refn(&b). The rule for ≤̇ is identical for these representations.

8.3 Avoiding conflicting symmetry breaking constraints

Conjure only breaks modelling symmetries introduced that are introduced through the

refinement of an abstract domain. The symmetry is introduced into the model by Conjure

and is broken immediately. Symmetry-breaking constraints are avoided in two ways. First,

the users of Conjure are limited to writing constraints using operators in Essence and

involving decision variables and parameters of the problem. They do not have access to the

collection of decision variables that are used to concretely represent the abstract decision

variables in Essence. Second, during the execution of Conjure there never exists more than

one modelling symmetry in the model. A modelling symmetry is temporarily introduced

and broken before any other modelling symmetry is introduced. The symmetry breaking is

done completely independently for each abstract decision variable.

8.4 Summary

The technique presented in this chapter extends the rule language of Conjure by adding

two new operators, and modifies structural constraints of those representation selection

rules which introduce modelling symmetry. This way symmetry can be broken cheaply and

automatically as it enters the model through the modelling process, increasing the quality

of the models that Conjure can produce beyond model kernels.
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8.4. Summary

We have shown how symmetry can be broken cheaply and automatically as it enters the

model through the modelling process, increasing the quality of the models that Conjure

can produce beyond model kernels.
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Chapter 9

Experimental Evaluation

This chapter evaluates the operation of Conjure using three experiments. The first experi-

ment tests the scalability of Conjure using nested abstract domains. The second experiment

consists of running Conjure on a wide selection of problem specifications and investigating

whether it can generate kernels of published CP models. The third experiment is a first

iteration on model selection amongst the set of models generated by Conjure. For this

experiment two different techniques are used and evaluated: racing and the Compact

heuristic.

Disclaimer: Parts of this work was published in [Akg+11b] and [Akg+13b]. Authors

of both papers contributed to the development of these ideas. However, I had significant

contributions to both papers: in particular I designed, implemented and ran all the experi-

ments including the racing method; designed the Compact heuristic; and implemented the

required functionality in Conjure.

9.1 Scalability of CONJURE

This section presents an experiment which tests the scalability of Conjure using nested

abstract domains. Handling of nested domains is the best way to stress test the performance

of Conjure, every level of nesting results in the creation of several concrete decision variables

and the addition of new structural constraints.
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In realistic Essence inputs, we typically see nesting of abstract domains up to at most 4

levels. However, Conjure is able to handle arbitrary levels of nesting, subject to time and

memory constraints for the computation.

In this experiment, 4 distinct categories of Essence inputs are constructed with 11 cases

in each category. The first category uses an integer domain as the base case: int(a..b). In

the following 10 cases, it successively adds a domain constructor of the form set (size

n) of around the previous domain. Hence, the 11th case will have a set domain nested 10

times and containing an integer domain at the very bottom. The second category is similar

but uses maxSize n instead of size n. A variable cardinality set uses boolean marker

variables and hence it will generate larger output models. The third and forth categories

of Essence specifications use mset domain constructors with a size n and maxSize n

attributes respectively. In all these cases a, b, and n are problem parameters. The refinement

will be performed at the problem class level and can later be instantiated using any value of

these parameters.

Since Conjure operates at the problem class level, its performance is amortised across

all the instances of the problem class at hand. Typically, users of CP technology will need to

solve several instances of the same problem class yet they will only need to run Conjure

once.

Table 9.1 presents the results of this experiment with a 1-hour time-limit. The reported

memory figures are maximum residency; and in general around %30 of the time is spent

for garbage collection. In these experiments, Conjure is able to generate output models up

to 7 levels of nesting. Both its time and memory usage grow pretty fast despite the input

size not growing a lot. However it is worth noting that the sizes of the output models grow

very fast too. For example, without quantification unrolling and starting with no problem

constraints in the input Essence, the output of 7-nested set (size n) case contains 2885

lines of Essence
′ constraints.

Table 9.2 presents the results of another scalability experiment, in which the number of

constraints in a problem specification is varied from 0 up to 100 by adding 10 constraints at
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Nesting
set

(size n)
set

(maxSize n)
mset

(size n)
mset

(maxSize n)

Time Mem. Time Mem. Time Mem. Time Mem.
0 < 1s 6MB < 1s 6MB < 1s 6MB < 1s 6MB
1 < 2s 6MB < 2s 6MB < 2s 9MB < 2s 6MB
2 3.81s 12MB 6.76s 16MB 4.33s 11MB 9.41s 20MB
3 17.09s 32MB 44.59s 79MB 32.80s 66MB 58.71s 116MB
4 63.59s 91MB 184.55s 363MB 461.22s 668MB 673.23s 902MB
5 223.81s 337MB 670.23s 896MB 2902.23s 5482MB Time out.
6 631.25s 765MB 2404.60s 2870MB Time out. Time out.
7 1911.24s 2393MB Time out. Time out. Time out.
8 Time out. Time out. Time out. Time out.
9 Time out. Time out. Time out. Time out.

10 Time out. Time out. Time out. Time out.

Table 9.1: Scaling with respect to levels of nesting

Number of constraints
set

(size n)
mset

(size n)

Time Mem. Time Mem.
0 1.11s 7MB 1.46s 8MB

10 10.08s 49MB 18.74s 82MB
20 27.03s 136MB 49.58s 204MB
30 52.12s 269MB 99.96s 507MB
40 85.77s 427MB 152.16s 661MB
50 126.16s 660MB 225.05s 1030MB
60 170.32s 770MB 311.28s 1588MB
70 224.96s 1190MB 400.42s 2176MB
80 288.46s 1435MB 520.37s 2960MB
90 355.36s 1824MB 605.79s 3104MB

100 416.91s 2607MB 761.52s 3996MB

Table 9.2: Scaling with respect to the number of constraints

every step. Each constraint is of the form p_i in x, where x is a set or a multi-set variable

and p_i is a problem parameter. Conjure scales much better in the number of constraints

in comparison to the level of nesting in domains.
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9.2 CONJURE can produce kernels of good models

Conjure achieves full coverage of Essence. It has at least one variable representation rule

for every abstract variable type, and horizontal and vertical expression refinement rules

for all the operators defined on them. This section tests the hypothesis that the kernels of

constraint models written by experts can be automatically generated by refining a problem’s

abstract specification. For two CP models to have the same model kernel, they need to share

the same viewpoint, the same representation of decision variables and the same formulation

of the problem constraints. Expert models can have additional features such as implied

constraints or symmetry breaking constraints but these are not considered to be in the

kernel of the CP model for this evaluation.

In order to do this, we take a diverse set of 32 benchmark problems drawn from the

literature and refined them with Conjure. Table 9.3 presents the results: the number

of generated models, papers that contain a kernel Conjure generate and the abstract

parameters and variables involved in the problem. Papers containing n kernels generated

by Conjure are labelled ×n. Notice the variety of decision variable types involved in the

benchmark problems, representing a proof that the current collection of rules, the rewrite

rule language, and the Conjure system as a whole is capable of refining a variety of abstract

problem specifications into concrete models.

The number of models generated for a problem specification depends on the number

of representation options for the involved abstract decision variables. For instance, the

Maximum Density Still Life contains a set decision variable whose elements are tuples and

currently the system has only one variable selection rule that matches this type. Problems

such as Magic Hexagon only contain decision variables that are concrete, so do not require

refinement. We did find papers containing kernels which we are currently unable to

generate, for example for Langford’s Number Problem and Maximum Density Still Life. These

come from complex reformulations of the problem. In each of these cases, an alternative

Essence specification would allow Conjure to generate the missing kernel.
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Further research is necessary to improve the quality of generated models. This is not

surprising since producing a good model is well known to be difficult even by human

modellers. We have established that good rewrite rules are applicable to many problems

and we hope as our refinement rules database improves further, we will produce better

models for all problems.

This section demonstrates Conjure’s ability to reproduce the kernels of the constraint

models of 32 benchmark problems found in the literature. It achieves full coverage of

the Essence language via a new domain-specific rule language, whose features include:

fine-grained refinement to avoid the need for flattening, which, as we have demonstrated,

can impair the models produced; horizontal rules that normalise expressions to reduce

considerably the total number of rules necessary for refinement; easy extensibility.

In future we of course wish to go beyond model kernels to produce full models of the

same quality as those found in the literature, including symmetry breaking and implied

constraints. Conjure’s flexible rule-based architecture is ideally placed to achieve these

aims in large part by adding new rules to those available (cf. the example in the previous

subsection). Furthermore, we will prune the set of models produced to contain only the

most effective models. In part, we plan to achieve this by applying a prioritisation system to

rule application. This will allow refinement paths that are provably superior to dominate

those shown to be weaker.

As noted, for a given specification Conjure is typically able to produce a large number

of models. A principal item of future work is to reduce this number to just the best

models. Conjure has begun this process by adding precedence levels to the refinement

rules. Specifically, we introduce a multiple level structure for the horizontal and vertical

refinement rules. In this setting, rules at the same level can be applied to an applicable term

simultaneously. However, a rule at a lower level will always have a higher precedence than

a rule at a higher level. This structure provides us with the necessary facilities to prune

the set of generated models. If a rule is known to be dominant to another one, it is simply

declared to be at a lower level.
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For example, the refinement rules database contains horizontal refinement rules to

enable the refinement of set equality constraint without giving a specific rule for that. If

there is no specific rule matching with set equality for some representation, Conjure will

transform it into a conjunction of two subseteq constraints. Then the horizontal rule for

subseteq will be applied to transform is into a universal quantification and set membership

constraint. Finally the set membership constraint will be transformed into an existential

quantification and equality constraint between the set elements.

This refinement is always correct, but rarely the most efficient. The rule author is of

course welcome to add a specialised refinement rule, if a better refinement for set equality

can be given for a specific representation. In this case, the number of generated models will

be doubled as there are two possible rewritings for the same expression.

However, if the newly added rule is defined to be at a lower level than the existing

horizontal rules; it will effectively prune the set of generated models to the supposedly

more efficient models.

9.2.1 Case study: Golomb Ruler

The Golomb Ruler problem1 is the problem of finding a ruler with n ticks such that the

differences between each pair of ticks is distinct, and the value of the maximum tick is

minimised.

The Golomb Ruler problem can be very concisely specified in Essence using a set

variable, an optimisation statement and a single constraint as given in Figure 9.1. The set

variable models the location of ticks on the ruler. Since there cannot be two ticks at the same

location, using a set to model this collection is sensible. Using a set variable gives Conjure

enough information to break modelling symmetry when the Explicit representation is used

as in Figure 9.2 (See lines 11 and 12 for the symmetry breaking constraint). In the Occurrence

representation, the choice of using a boolean array does not introduce modelling symmetry

in the first place, so symmetry breaking constraints are not necessary. The only structural

1CSPLib problem number 6: http://www.csplib.org
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Table 9.3: Running Conjure on benchmark problems.

Problem name Models Reference Nb. abstract params2 and vars
Car Sequencing 128 [Gra+05] 4 functions, 1 relation
Template Design 16 [Pro+98] 2 function variables, 1 mapping msets to integers
Low Autocorellation Binary Sequences 4 [Gen+99] 1 function
Golomb Ruler 81 [Smi+00; Pre03] 1 set
All-interval series 8 [Cho+02] 2 functions
Vessel loading 256 [Bro98] 9 functions, 1 mapping from a set
Perfect Square Placement 1024 [Cam+10] 2 functions
Social Golfers 3 [Kiz+01; Haw+05] multi-set of partitions
Progressive Party 81 [Smi+95] 1 set, 1 set of functions
Schur’s Lemma 81 [Fle+02b]×2 1 partition
Traffic Lights 2 [How98] 1 set of functions mapping integers to tuples
Magic Squares 1 [Ref04] 1 2-dimensional matrix
Bus Driver Scheduling 27 [Mul98] 1 set of sets, 1 partition
Magic Hexagon 1 Model from CSPLib 23 1 2-dimensional matrix
Langford’s Number Problem 32 [Hni+04] 1 function
Round Robin Tournament Scheduling 27 [Fri+04] 1 relation between 2 integers and 1 set
BIBD 16 [Pet05] 1 relation between 2 unnamed types
Balanced Academic Curriculum Problem 512 [Hni+02] 2 functions, 1 relations
Rack Configuration Problem 288 [Kiz+01] 7 functions, 1 mapping integers to sets
Maximum Density Still Life 1 [Smi06b] 1 set of tuples
Word Design for DNA Computing 16 Model from CSPLib 33 1 set of functions
Warehouse Location Problem 16 [Van99] 3 functions, 1 mapping tuples to integers
Fixed Length Error Correcting Codes 16 [Fri+03] 2 functions, 1 mapping tuples to integers
Steel Mill 4 [Fle+02a] 3 functions, 1 from sets
N-Fractions Puzzle 16 [Fri+04] 1 function
Steiner Triple Systems 9 [Kiz+01; Haw+05] 1 set of sets
N-Queens Problem 4 [Hni+04]×2 1 function
Peaceably Co-existing Armies of Queens 1 [Smi+04] 1 set of tuples
Maximum Clique Problem 81 [Reg+03] 1 set, 1 set of sets
Graph Colouring 4 [Hao+96; Cha+97] 1 function
SONET Configuration 27 [Fri+05a]1 1 mset of sets, 1 set of sets
Knapsack Problem 36 [Sel09] 2 functions, 1 set

[1] Some models in this paper have set variables, which Conjure currently always refines.
[2] Since Conjure operates at the problem class level, problem parameters need to be refined as well as decision variables.137
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constraint required by the Occurrence representation is the cardinality constraint as given

in Figure 9.3 (See line 11). These two representations have complementary strengths in

this regard: one of them does not require a cardinality constraint but introduces symmetry,

whereas the other one requires a cardinality constraint but does not introduce symmetry.

In both the Explicit and the Occurrence models the maximum element of the set is

modelled using an auxiliary variable. The auxiliary variable is created using a bubble

expression together with the two constraints given in lines 9 and 10 in both models. These

constraints make sure aux0 –the maximum element of the set– is greater or equal to every

element in the set and it is also a member of the set. The constraints come from the definition

of maximum value in a set and are implemented using Figure 6.43.

Finally the problem constraint is refined using the appropriate vertical rules for both

representations. Notice how the two models contain quantified expressions with simple

integer domains as a result. These are the only quantified expressions supported by

Essence
′. One important difference between the two models is the number of constraints

after unrolling. In the Explicit model, the number of constraints corresponding to the

original constraint in Essence increase linearly with respect to the number of ticks, n. In the

Occurrence model, they increase exponentially in the number of ticks.

These models present kernels of two published models for the Golomb Ruler problem.

Conjure does not only generate these two models, but it also generates several other models

for this problem. The variation in models come mostly from using the Explicit represent-

ation for parts of the problem and the Occurrence representation for the remaining parts.

Models using multiple representations also contain channelling constraints as described in

Section 4.2.6.

9.3 Automated Model Selection

The previous section shows that Conjure can successfully refine a set of model kernels

(i.e. excluding symmetry breaking and implied constraints) from a given specification, and
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1 language Essence 1 . 3
2

3 given n : i n t
4 where n >= 0
5

6 l e t t i n g bound be 2 ∗∗ n
7

8 f ind Ticks : s e t ( s i z e n ) of i n t ( 0 . . bound )
9

10 minimising max( Ticks )
11

12 such t h a t
13 f o r A l l pair1_1 , pair1_2 in Ticks , pair1_1 < pair1_2 .
14 f o r A l l pair2_1 , pair2_2 in Ticks , pair2_1 < pair2_2 .
15 ( pair1_1 , pair1_2 ) != ( pair2_1 , pair2_2 )
16 −>
17 max ( { pair1_1 , pair1_2 } ) − min ( { pair1_1 , pair1_2 } ) !=
18 max ( { pair2_1 , pair2_2 } ) − min ( { pair2_1 , pair2_2 } )

Figure 9.1: The Essence specification of the Golomb Ruler problem

that this set contains the kernels of effective models. The addition of symmetry breaking

constraints as described in Chapter 8 further enhances the quality of models that Conjure

can produce. This sections presents a method of automatically selecting an effective subset

of models from among the set of all models it can produce. The analysis is done for a

problem class. The method takes as input a problem specification in Essence and a set of

instances representative of the distribution of instances a user wishes to solve.

The subset chosen contains all those models that are not significantly outperformed

across the set of supplied instances. This naturally suggests the notion of a model portfolio,

analogous to algorithm portfolios [Hub+97; Gom+01]. No claim is made that the output set

of models forms a good portfolio containing diverse models, such a claim requires more

investigation.

The following methodology is used to test this hypothesis. Our measure of quality of a

model with respect to an instance is the time taken for SavileRow to instantiate the model

and translate for input to the Minion constraint solver plus the time taken for Minion to
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1 language ESSENCE’ 1 . 0
2

3 given n : i n t
4 where n >= 0
5

6 l e t t i n g bound be 2 ∗∗ n
7

8 f ind T i c k s _ E x p l i c i t : matrix indexed by [ i n t ( 1 . . n ) ] of i n t ( 0 . . bound )
9 f ind aux0 : i n t ( 0 . . bound )

10

11 minimising aux0
12

13 such t h a t
14 f o r A l l q0 : i n t ( 1 . . n ) . T i c k s _ E x p l i c i t [ q0 ] <= aux0 ,
15 e x i s t s q0 : i n t ( 1 . . n ) . T i c k s _ E x p l i c i t [ q0 ] = aux0 ,
16 f o r A l l q0 : i n t ( 1 . . n − 1)
17 . T i c k s _ E x p l i c i t [ q0 ] < T i c k s _ E x p l i c i t [ q0 + 1 ] ,
18 f o r A l l q0 : i n t ( 1 . . n )
19 . ( f o r A l l q1 : i n t ( 1 . . n )
20 . T i c k s _ E x p l i c i t [ q0 ] < T i c k s _ E x p l i c i t [ q1 ]
21 −>
22 ( f o r A l l q2 : i n t ( 1 . . n )
23 . ( f o r A l l q3 : i n t ( 1 . . n )
24 . T i c k s _ E x p l i c i t [ q2 ] < T i c k s _ E x p l i c i t [ q3 ]
25 −>
26 ( T i c k s _ E x p l i c i t [ q0 ] != T i c k s _ E x p l i c i t [ q2 ]
27 \/
28 T i c k s _ E x p l i c i t [ q1 ] != T i c k s _ E x p l i c i t [ q3 ]
29 −>
30 max( T i c k s _ E x p l i c i t [ q0 ] , T i c k s _ E x p l i c i t [ q1 ] )
31 −
32 min ( T i c k s _ E x p l i c i t [ q0 ] , T i c k s _ E x p l i c i t [ q1 ] )
33 !=
34 max( T i c k s _ E x p l i c i t [ q2 ] , T i c k s _ E x p l i c i t [ q3 ] )
35 −
36 min ( T i c k s _ E x p l i c i t [ q2 ] , T i c k s _ E x p l i c i t [ q3 ] ) ) ) ) )

Figure 9.2: The Essence
′ model for the Golomb Ruler problem using the Explicit repres-

entation
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1 language ESSENCE’ 1 . 0
2

3 given n : i n t
4 where n >= 0
5

6 l e t t i n g bound be 2 ∗∗ n
7

8 f ind Ticks_Occurrence : matrix indexed by [ i n t ( 0 . . bound ) ] of bool
9 f ind aux0 : i n t ( 0 . . bound )

10

11 minimising aux0
12

13 such t h a t
14 f o r A l l q0 : i n t ( 0 . . bound ) . Ticks_Occurrence [ q0 ] −> q0 <= aux0 ,
15 Ticks_Occurrence [ aux0 ] ,
16 (sum q0 : i n t ( 0 . . bound ) . Ticks_Occurrence [ q0 ] ) = n ,
17 f o r A l l q0 : i n t ( 0 . . bound )
18 . Ticks_Occurrence [ q0 ]
19 −>
20 ( f o r A l l q1 : i n t ( 0 . . bound )
21 . q0 < q1 /\ Ticks_Occurrence [ q1 ]
22 −>
23 ( f o r A l l q2 : i n t ( 0 . . bound )
24 . Ticks_Occurrence [ q2 ]
25 −>
26 ( f o r A l l q3 : i n t ( 0 . . bound )
27 . q2 < q3 /\ Ticks_Occurrence [ q3 ]
28 −>
29 ( q0 != q2 \/ q1 != q3
30 −>
31 max( q0 , q1 ) − min ( q0 , q1 ) !=
32 max( q2 , q3 ) − min ( q2 , q3 ) ) ) ) )

Figure 9.3: The Essence
′ model for the Golomb Ruler problem using the Occurrence

representation
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solve the instance. The time taken by SavileRow is added since it adds instance-specific

optimisations to the model, such as common subexpression elimination [Gen+08], which

are desirable in practice. We iterate over the set of instances supplied with a specification,

and for each we conduct a race [Bir+02] based on this quality measure. The ‘winners’ of

this instance race are the set of models containing the model solved most quickly and every

other model within a factor of two of that time or solved within 10 seconds (so as to prevent

trivial instances from pruning). The timeout used is 1 hour. Therefore, for a particular

instance, if the fastest model is solved in 30 minutes or more, the result for this instance

race is the set of models entered for the race. The set of models entered into the race for

instance i are the winners of the race for instance i− 1. After we have iterated over all of the

supplied instances, the subset of models remaining is selected for the specified class.

This process is predicated on the assumption that some models perform well on all

instances, and therefore the order of iteration over the supplied instances is unimportant.

In the experiments thus far, this assumption has held for the benchmarks and instances

tested. This, however, is not expected to always to hold. For example, in a problem class

whose instances vary substantially in size representational choices for the smallest instances

may not be the best for the largest, and vice-versa. In future, the production of alternative

models for different subdivisions of the instance space can be studied.

9.3.0.1 Heuristic Model Selection

As a contrast (and for comparison) to the racing approach described above, this section

presents a very lightweight heuristic approach. The heuristic will select a model without

even generating multiple complete models, and without running tests using Savile Row

and Minion. It will not even require problem instances. Since it is much more lightweight

and has less information to draw on, it cannot be expected to be as accurate as the racing

approach. Nonetheless its performance in comparison to racing is demonstrated in the

following.

The heuristic is named Compact and it is applied at each point where an abstract type

142



9.3. Automated Model Selection

1 given d , lam , q , v : i n t ( 1 . . )
2 l e t t i n g Character be domain i n t ( 1 . . q )
3 l e t t i n g Index be domain i n t ( 1 . . lam ∗ q )
4 l e t t i n g S t r i n g be domain funct ion ( t o t a l ) Index −−> Character
5 f ind E : s e t ( s i z e v ) of S t r i n g
6 such t h a t f o r A l l s in E . f o r A l l a : Character .
7 (sum i : Index . t o I n t ( s ( i ) = a ) ) = lam ,
8 f o r A l l s1 , s2 in E , s1 != s2 .
9 (sum i : Index . t o I n t ( s1 ( i ) != s2 ( i ) ) ) = d

Figure 9.4: Essence specification of the EFPA Problem

or a constraint expression may be refined in multiple ways. For an abstract type, it defines

an ordering as follows: concrete domains (such as bool, matrix) are smaller than abstract

domains; within concrete domains, bool is smaller than int and int is smaller than matrix;

these rules are applied recursively, so that a one-dimensional matrix of int is smaller than

any two-dimensional matrix; abstract types also have an ordering set < mset < function

< relation < partition and this ordering is also applied recursively. Compact will select

the smallest domain according to this order. For a constraint expression (and the objective),

Compact simply chooses the refinement with the least depth of the abstract syntax tree.

9.3.0.2 Case Study: Equidistant Frequency Permutation Arrays

The model selection process is demonstrated using the Equidistant Frequency Permutation

Array (EFPA) problem [Huc+09]: ‘The problem has parameters v, q, λ, d and it is to find a

set E of size v, of sequences of length qλ, such that each sequence contains λ of each symbol

in the set {1, . . . , q}. For each pair of sequences in E, the pair are Hamming distance d apart

(i.e. there are d places where the sequences disagree)’.

Again, this problem is concisely specified in Essence (see Figure 9.4) with a single

abstract decision variable E and two constraints. The first ensures that each codeword

must contain each symbol λ times, the second that each pair of codewords must differ in

exactly d places. Conjure refines this specification into 45 models. The type of E is a fixed

size set, containing a total function. The outer set is always modelled using the explicit
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representation (as a vector of the inner type) and the symmetry is broken by ordering the

vector with <̇. The total function is refined in two ways: to a vector, or to a relation. In

the latter case the relation is refined in four different ways, giving five representations

of E in total. Subsets of these five are channelled and constraints are stated on different

representations to create 45 models.

Conjure has a final compacting step that simplifies the models. For EFPA, some pairs of

models become identical when compacted and in fact we have 37 unique models after this

step. Of the problem classes used in this experiment only EFPA exhibited this behaviour.

For model selection all 45 models are used.

For EFPA the 24 instances from Huczynska et al. [Huc+09] are used. In addition 12

easier instances were created by taking the satisfiable instances from Huczynska et al. and

reducing v by one. Identifying instances by the tuple 〈d, λ, q, v〉, the first instance we race

is 〈3, 7, 7, 5〉. This instance is exceptionally discriminating. The number of winners is 4, so

41 models are eliminated at this stage. Section 9.3.1 shows that not all problems converge

so quickly. Second, the remaining models are raced on the instance 〈3, 8, 8, 6〉. This does

not eliminate any models, although they are ranked in a different order. This process is

continued for another 30 instances that eliminate no models. Instance 〈6, 4, 3, 12〉 eliminates

one model, leaving three. Finally the last three instances eliminate no more models so the

final winning set has three models.

All of the final set of models contain the vector representation of the total function. In

addition, two of the models refine the function to a relation, then to a two-dimensional

matrix of boolean variables (which is channelled with the vector). These two models differ

on how one constraint is stated. The relative similarity of these three models shows that on

this problem there is a clear cluster of similar winners among a more diverse set of models.

9.3.1 Experimental Evaluation

In this subsection we present the results of model selection for 4 problem classes. In

Table 9.4 we report the time taken and number of final winners for EFPA, Progressive Party
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Problem Models Final Winners Elimination sequence Total Wallclock Time
EFPA 45 3 45, 4, 4, 4, 4, ... 8 hours
PPP 81 6 81, 51, 28, 26, 18, ... 8 hours
SONET 27 1 27, 9, 9, 9, 9, ... 4 hours
SGP 4 2 4, 4, 4, 4, 3, ... 7 hours

Table 9.4: Model Selection with Racing

Problem (PPP), the SONET network design problem, and Error Correcting Codes (ECC).

The experiments were run with 20 processes in parallel on a 32-core machine, so total CPU

time would be approximately 20 times the wallclock time. The approach we have proposed

for automated model selection is able to rapidly eliminate models and thus avoid repeatedly

running the constraint solver on poor models that take the most time to solve. The total

times spent for the races is found to be encouraging because this is an analysis that is done

once for the problem class.

For EFPA the first instance discriminated extremely well, and eliminated 41 of 45 models.

In contrast, PPP converges more slowly. Starting with 81 models, the winning set sizes are

51, 28, 26, 18, 18, 18, 6 etc. In this case several instances are required to weed out the poor

models. SONET and SGP also converge more slowly than EFPA.

For the problem classes reported in Table 9.4, the Compact heuristic finds one of the

winner models for EFPA and PPP. For SONET, Compact selects a model that is among the

top four models, and is among the last to be eliminated. For SGP Compact selects a model

that is eliminated at a late stage by racing. These are very promising results for a very

simple heuristic.

9.3.2 Conclusions

This section has demonstrated significant progress towards the goal of automated constraint

modelling. Furthermore, we have shown how, via a racing process, Conjure can select

effective models from among those it can produce.
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9.4 Summary

This chapter showed that Conjure can produce kernels of published CP models. However,

it can also generate many other models and discriminating good models from bad ones is

very hard. The chapter also provides two ways to find these good models among all the

models generated by Conjure: racing and the Compact heuristic. These are promising

results showing that Conjure is widely applicable, it can generate good models, and there

are ways to automatically identify these good models. All of these aspects can be improved

considerable with more research focused on each of them.
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Chapter 10

Conclusion

This thesis presented a framework for automated modelling in CP: Conjure.

Automating aspects of the modelling process is crucial for making CP technology more

widely useful and powerful for both novice and expert users of the technology. For novice

users, using an abstract language removes the need to make several ad-hoc modelling

decisions. For experts, separating problem specification and the process modelling has

the potential to make modelling idioms reusable. Without automated modelling tools and

a principled way to encode modelling transformations CP modelling will have to stay a

challenging task that has to be repeated for every new problem, no matter if the problem

shares common parts with other problems modelled very effectively by experts or not.

The main contribution of this thesis is a refinement based approach to automated

modelling in CP using a collection of techniques which are demonstrated in the tool

Conjure. Distinguishing features of Conjure and Essence are support for a rich collection

of abstract domain constructors and arbitrarily nested types in the input language, operating

at the problem class level instead of at the problem instance level, and the generation of

multiple alternative models instead of a single model. Conjure also differs from existing

tools by the use of a domain specific rewrite rule language and its special focus on ease of

extensibility. Conjure achieves full coverage of the input language Essence and produces

kernels of effective CP models fully automatically. It works without flattening input problem
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specifications as a first step and uses representation independent horizontal rules to give

sensible defaults to many expressions in Essence, it covers more of the input language using

a very small number of rules.

The thesis also presented a domain-specific rule language for modelling transformations

(Chapter 5). Having a rule language instead of merely encoding transformations internally

to the tool enables easier maintenance of the rules database, makes it easier for CP modelling

experts to author their own rules and does not require a recompilation of the main tool.

Extensibility (Chapter 7) is a very valuable property for an automated modelling tool,

because new ways of modelling existing problems are discovered continuously and their

discovery generally requires rapid experimentation. Conjure provides a fruitful ground to

study alternative ways of modelling problems.

Automated symmetry breaking in Conjure improves the models produced drastically

(Chapter 8). Thanks to the highly abstract input language Essence, most of the symmetry

in the problem can be viewed as modelling symmetry apparent in the domains of decision

variables. Taking advantage of this, Conjure does not need to spend time and effort

on detecting symmetry, it only need to break what it introduces. The symmetry breaking

constraints introduced by Conjure are valid for the whole problem class, rather than specific

instances of the problem.

Racing is presented (Chapter 9) as a principled way to find effective models for a problem

class, when the user has access to a representative collection of instances for the problem

class of interest. The Compact heuristic is presented (Chapter 9) as a more light-weight way

of model selection: the heuristic does not require any instance data and works much faster

because it does not even generate multiple alternative models, it generated one model only.

In order to evaluate Conjure’s capabilities, three experiments were run (Chapter 9).

The first is a scalability experiment. It demonstrates, using significantly larger problem

specifications than those typically needed, that Conjure is able to produce output models

for decision variables with nested domains. The second one compares models generated

by Conjure to models published in the literature to analyse whether Conjure is able
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to produce good models. This evaluation gives us confidence in that among the models

produced, there are some good ones. The third experiment is an attempt at finding the

needle in the haystack, identifying effective models among a large collection of equivalent

models. The racing approach is presented as a costly but effective approach together with

the Compact heuristic which is much cheaper in comparison and only works in some cases.

The Conjure system presented in this thesis provides a system capable of automatically

generating several alternative constraint models with different trade-offs. The biggest

limitation preventing practical use of a system like Conjure is lack of robust model selection

methods in CP. The quality and quantity of alternative models generated by Conjure can

also be viewed as a limitation, however this can only be improved together with better

model selection techniques.

10.1 Future work

10.1.1 Automated model generation

Conjure provides good tool support for further research on automated CP modelling. It

provides a powerful infrastructure which can be improved in several directions.

10.1.1.1 New representations

This thesis presented a variety of representation options for abstract domains of decision

variables. However, this is only scratching the surface: Selecting the viewpoint is one of the

most important modelling decisions, and more representation options should be added.

10.1.1.2 New abstract domains

Essence follows notions of discrete mathematics when defining its abstract domains. This

proves to be very useful, the domains in Essence can be used in problem specifications of

many problems without too much trouble. However, the addition of new abstract domains

will make Essence even more useful and concise for the users. The new domains can be
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application domain specific; such as tasks for the scheduling domain, stochastic variables for

modelling stochastic problems, or primitives for inventory planning problems so inventory

planners can express their problems in terms of shipments and orders.

10.1.1.3 Symmetry breaking

Conjure breaks all modelling symmetry it introduces. However, some problem specific-

ations can have other kinds of symmetry in them that is not introduced by Conjure but

introduces by the problem owner when formulating their problem in Essence. Detecting

and breaking user symmetry and more importantly breaking it in a consistent way to

breaking modelling symmetry is a challenging task, but has the potential to have rewarding

returns.

10.1.1.4 Implied constraints

Similar to how Conjure can break modelling symmetry, it can automatically generate im-

plied constraints leveraging from the high level and abstract nature of problem specifications

in Essence. For example, when the problem contains two sets and a condition that one is a

subset of the other, Conjure can add a constraint between the cardinalities of the two sets.

Such a constraint is likely to be very useful especially when one of the sets have a known

cardinality.

10.1.2 Automated model selection

The model selection problem is very important in CP, since a single problem can be modelled

in several different ways, and there is a vast variation in solution performance depending

on the model chosen. Now that we are able to automatically generate several models using

Conjure, automating the model selection process naturally becomes the next big challenge.

Equipped with a good way of differentiating between CP models, an automated modelling

system can finally be very useful to both novice and expert users of CP technology.
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The model selection problem in CP is very similar to the general algorithm selection

problem [Ric76]. A thorough survey of the literature about this problem with a strong

emphasis to combinatorial search problems and CP can be found in [Kot12].

There are several options to consider before we can attack this problem: to select a single

model or a set of models; to work on problem classes or problem instances; if working on

problem classes, how to analyse and explore the instance space. Since this is a very new

area of research, instead of focusing on one we should try to enable multiple approaches

simultaneously in Conjure. some possibilities are the following.

Post-Conjure analysis Using Conjure to generate all alternative models for a given prob-

lem, and using this set of concrete CP models as input for model selection. An

advantage of this approach is the clear separation between model generation and

selection. On the other hand, a major disadvantage is having to generate possibly

thousands of models only to realise that most of them are not very promising early in

model selection.

Mid-Conjure heuristics Using heuristics to choose promising transformations during Con-

jure. A first iteration of this approach presents [Akg+13b] promising results. In this

work, Conjure locally selects the transformation which generates the most compact

domain/expression.

In addition, hybrid approaches can also be taken; i.e., multiple heuristics can be used

to generate a smaller set of alternative models, and this set can be used as input to a more

generic model selection procedure.

Selecting models for problem classes vs problem instances In general, working on prob-

lem instances is easier for both automated model generation and for automated model

selection. This should not be surprising as problem classes are essentially paramet-

erised problem instances, and they describe a set of problems rather than a single

problem. For this very reason, selecting good models for a problem class is also more
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valuable: once selection is completed, findings can be used for all instances of the

same class. This is also why we can afford more expensive analysis for model selection

of problem classes, the cost will be amortised over all the instances.

Selecting for the whole class vs subdivisions of the instance space Selecting effective mod-

els for a problem class can be tempting. However, we know different models can

be better for different instances — in an extreme example a problem class can be

composed of two subproblems and a parameter value can be controlling which sub-

problem to actually solve. In such a case, the choice of an effective model highly

depends on the value of the given parameter.

Selecting a single model vs multiple models Even if we limit ourselves to working on a

single subdivision of the instance space or to a single instance, trying to select a

single effective model can result in eliminating promising models prematurely due

to possible shortcomings of the learning technique. In contrast, selecting a set of

promising models can lead us to the notion of model portfolios, analogous to algorithm

portfolios [Hub+97; Gom+01].

10.1.2.1 Better metrics for model comparison

Better metrics to compare models are needed. For instance level analysis, solution time is

the ultimate metric, however it is potentially very expensive, we need proxies to this. For

class level analysis, instance level metrics can be augmented with standard sampling and

aggregation methods if a representative subset of instance data is available. Without such

data we are left with class level symbolic analysis to compare models.

An important property of a model comparison metric is whether it can be used to

compare partial models or not. If a metric has this property, a best-so-far model can be used

as a lower bound and we can employ branch-and-bound to prune early during automated

model generation, and only generate good models.
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10.1.2.2 Other heuristics

Another direction is to explore better heuristics to guide Conjure and evaluate their relative

performances. Simply, each such heuristic can be used independently to generate a portfolio

of models. A more sophisticated method will be to use a hyper-heuristic to guide which one

of the smaller heuristics should be used during model generation; dynamically switching

heuristics for different parts of the model.

10.1.2.3 Feedback loop

Findings of model selection should be fed back to automated model generation in many

ways. For example, if some models always seem to dominate, rules which generate those

models can be put in higher precedence levels. Another kind of feedback can be when

none of the generated models meet the expectations. In such a case, a modelling expert can

come up with new modelling tricks and test the performance gains on the problem at hand.

When a rule is discovered to improve the generated models, that rule should be added to

the general database of Conjure so future problems can also benefit from the new rule.
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